期刊文献+

支持向量机的SMO算法及其自适应改进研究 被引量:1

The Algorithm Research on Support Vector Machine and Adaptive SMO Improvement
下载PDF
导出
摘要 提出在SMO算法上应用自适应学习的思想,并利用求解凸二次规划寻优问题的基础上进行改进的研究.研究表明,基于自适应学习的思想对SMO算法进行改进,可使SVM算法更能适应实际应用快速、高效的需求. Support vector machine (SVM)is an important kind of statistical machine learning algorithm,which SMO algorithm is effective in practical application. SMO is based on support vector machine to solve quadratic progra- mming problem into a set of smaller problems, so as to achieve the minimum serial. The proposed method is applied in SMO algorithm of adaptive learning ideas, and the improvement on the basis of using the optimum solution convex quadratic programming problem. Therefore, SMO algorithm based on the idea of the adaptive learning has been improved SMO. And it will enable the SVM algorithm to adapt to the practical application of fast and efficient needs.
出处 《河南科学》 2010年第4期436-439,共4页 Henan Science
基金 河南省教育厅自然科学研究计划项目(2009B520031)
关键词 机器学习 支持向量机 SMO算法 自适应 machine learning support vector machine SMO algorithm adaptive
  • 相关文献

参考文献3

  • 1王珏,周志华,周傲英.机器学习及其应用[M].北京:清华大学出版社,2006.
  • 2Chih Weihsu, Chih Jenlin. A comparison of methods for multiclass support vector machines [J]. IEEE Trans Von Neural Net Works, 2002, 13 (2) : 186.
  • 3Cherkassky V, Ma Yunqian. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17 (1) : 223-224.

共引文献33

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部