期刊文献+

基于多序选择域的协同过滤推荐算法 被引量:2

Collaborative Filtering Recommendation Algorithm Based on Multiple Ranked Choosing Domains
下载PDF
导出
摘要 传统的基于用户评分的协同过滤推荐系统无法找到合适的评分标准,对大量的评分数据挖掘不足,影响了用户的个性化表达。针对该问题,提出一种基于多序选择域的协同过滤推荐算法,采用选择域滑动匹配寻找项目关联性算法计算偏爱比较值,通过相似特征矩阵进行未评价项目的预测评价。实验结果表明,该推荐算法通过预测未评价项目可有效缓解数据的稀疏性,提高了推荐质量。 The traditional collaborative filtering technology based on rating can not find the right criteria. It is difficult to find exact relation for large ratings aggregate of items, so the expression of personalize is influenced. A collaborative filtering recommendation algorithm based on multiple ranked choosing domains is proposed, which computes comparison of preference value by relevance of sliding matched items in choosing domains. It proposes a novel conservative similarity algorithm for profile matrix, and implements predicted ratings by the similar users. Experimental results show that the proposed method can efficiently ease the sparsity of data, and significantly improve recommender precision in predicted ratings.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第7期36-38,共3页 Computer Engineering
基金 河北省自然科学基金资助项目(F2009000477)
关键词 协同过滤推荐 多序选择域 相似度保守算法 预测评价 collaborative filtering recommendation multiple ranked choosing domains conservative similarity algorithm predicted ratings
  • 相关文献

参考文献9

  • 1Jin Xin, Zhou Yanzan, Mobasher B. A Unified Approach to Personalization Based on Probabilistic Latent Semantic Models of Web Usage Andcontent[C]//Proc. of SWP'04. San Jose, USA: [s. n.], 2004.
  • 2Herlocker J, Konstan J, Riedl J. Explaining CoUab-rative Filtering Recommendations[C]//Proc. of ACM Conf. on Computer Supported Cooperative Work. [S. l.]: ACM Press, 2000.
  • 3Park H S, Yoo J, Cho S B. A Context-aware Music Recommendation System Using Fuzzy Bayesian Networks with Utility Theory[C]// Proc. of FSKD'06. Xi'an, China: [s. n.], 2006.
  • 4Velasquez J D, Palade V. Building a Knowledge Base for Imple- menting a Web Based Computerized Recommendation System[J]. International Journal on Artificial Intelligence Tools, 2007, 16(5): 793-828.
  • 5Mobasher B, Dai Honghua, Luo Tao. Improving the Effectiveness of Collaborative Filtering on Anonymous Web Usage Data[C]//Proc. oflJCAI'01. Seattle, WA, USA: [s. n.], 2001.
  • 6lguchi M, Goto S. Anonymous P2P Web Browse History Sharing for Web Page Recommendation[J]. IEICE Trans. on Information & Systems, 2007, E90-D(9): 1343-1353.
  • 7Pogacnik M, Tasic J, Meza M, et al. Personal Content Recommender Based on a Hierarchical User Model for the Selection of TV Programmes[J]. User Modelling and User Adapted Interaction, 2005 15(5): 425-457.
  • 8Kim K, Ahn H. A Recommender System Using GAK-means Clustering in an Online Shopping Market[J]. Expert Systems with Applications, 2008, 34(2): 1200-1209.
  • 9Sarwar B, Karypis G, Konstan J, et al. Item-based Collaborative Filtering Recommendation Algorithm[C]//Proc. of the 10th International World Wide Web Conference. Hong Kong, China: ACM Press, 2001.

同被引文献10

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部