期刊文献+

手写汉语拼音的融合识别系统 被引量:1

Combined Recognition System for Handwritten Pinyin
下载PDF
导出
摘要 手写设备用户容易忘记特定中文单字写法,需要为其提供拼音输入法。采用分类器融合方式构筑拼音单词识别系统,通过隐马尔可夫模型分类器获得拼音单词的切分点,利用统计特征识别模块进行识别后融合,研究并改进拼音单词基线提取方法。实验结果表明,该方法对17745个测试样本的识别率达91.37%。 Handwritten device users are easy to forget how to write a certain Chinese character. It is necessary to provide Pinyin input method for them. This paper constructs a Pinyin word recognition system through classifier fusion style. It obtains the cutting point of Pinyin word by Hidden Markov Model(HMM) classifier, accomplishes after-recognition fusion by using recognition module for statistic characteristic, studies and improves the base line extraction method for Pinyin word. Experimental results show that this method can recognize 91.37% test samples from 17 745 ones.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第7期170-172,共3页 Computer Engineering
基金 国家"973"计划基金资助项目(2007CB311004) 国家自然科学基金资助项目(60772049)
关键词 中文信息处理 字符识别 基线 Chinese information processing character recognition base line
  • 相关文献

参考文献5

  • 1Ge Yong, Guo Fengjun, Zhen Lixin, et al. Online Chinese Character Recognition System with Handwritten Pinyin Input[C]//Proc. of 2005 International Conference on Document Analysis and Recognition. Seoul, Korea: [s. n.], 2005: 1265-1269.
  • 2Homayoon S M B. Pre-processing the Dynamics of On-line Handwriting Data, Feature Extraction and Recognition[C]//Proc. of the 5th lnt'l Workshop on Frontiers. in Handwriting Recognition. Colchester, England, UK: [s. n.], 1996: 255-258.
  • 3Bai Zhenlong, Huo Qiang. A Study on the Use of 8-directional Features for Online Handwritten Chinese Character Recognition[C]//Proc, of 2005 International Conference on Document Analysis and Recognition. Seoul, Korea: [s. n.], 2005: 262-266.
  • 4Biem A. Minimum Classification Error Training for Online Hand- writing Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7): 1041-1051.
  • 5Homayoon S M B, Nathan K, Clary G J, et al. Size Normalization in On-line Unconstrained Handwriting Recognition[C]//Proc. of ICIP'94. Austin, Texas, USA: [s. n.], 1994: 169-173.

同被引文献17

  • 1唐鹏,高琳,周欣,盛鹏.基于先验动态形状约束的视频目标提取[J].四川大学学报(工程科学版),2009(2):185-191. 被引量:2
  • 2Kwang-Baek Kim,Jae-Hyun Cho.Recognition of Identifiers from Shipping Container Images Using Fuzzy Binarization and Enhanced Fuzzy RBF Network[J]. Soft Computing . 2007 (3)
  • 3Anagnostopoulos C-N E,Anagnostopoulos I E,Psoroulas ID,et al.License plate recognition from still images and videosequences:a survey. IEEE Transactions on IntelligentTransportation Systems . 2008
  • 4Ntirogiannis K,Gatos B,Pratikakis I.A modified adaptivelogical level binarization technique for historical documentimages. 10th International Conference on Document A-nalysis and Recognition . 2009
  • 5He Z,Liu J,Ma H,et al.A newautomatic extraction methodof container identity codes. IEEE Transactions on Intel-ligent Transportation Systems . 2005
  • 6Guo L J,Tang X,Liu Y B.Character recognition based on 2-d histogram image threshold segmentation. AdvancedMaterials Research . 2010
  • 7Kala R,Vazirani H,Shukla A,et al.Offline handwritingrecognition using genetic algorithm. International Jour-nal of Computer Science Issues . 2010
  • 8Shukla N,Shandilya M.Invariant features comparison inhidden markov model and SIFTfor offline handwritten signa-ture database. International Journal of Computer Appli-cations . 2010
  • 9Rabiner L R.Tutorial on hidden markov models and selected applications in speech recognition. Proceedings of Tricomm . 1989
  • 10Tong-Hua Su,Tian-Wen Zhang,De-Jun Guan,Hu-Jie Huang.Off-line recognition of realistic Chinese handwriting using segmentation-free strategy. Pattern Recognition . 2009

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部