摘要
手写设备用户容易忘记特定中文单字写法,需要为其提供拼音输入法。采用分类器融合方式构筑拼音单词识别系统,通过隐马尔可夫模型分类器获得拼音单词的切分点,利用统计特征识别模块进行识别后融合,研究并改进拼音单词基线提取方法。实验结果表明,该方法对17745个测试样本的识别率达91.37%。
Handwritten device users are easy to forget how to write a certain Chinese character. It is necessary to provide Pinyin input method for them. This paper constructs a Pinyin word recognition system through classifier fusion style. It obtains the cutting point of Pinyin word by Hidden Markov Model(HMM) classifier, accomplishes after-recognition fusion by using recognition module for statistic characteristic, studies and improves the base line extraction method for Pinyin word. Experimental results show that this method can recognize 91.37% test samples from 17 745 ones.
出处
《计算机工程》
CAS
CSCD
北大核心
2010年第7期170-172,共3页
Computer Engineering
基金
国家"973"计划基金资助项目(2007CB311004)
国家自然科学基金资助项目(60772049)
关键词
中文信息处理
字符识别
基线
Chinese information processing
character recognition
base line