期刊文献+

基于独立成分分析和核向量机的人脸识别 被引量:21

Face Recognition Based on Independent Component Analysis and Core Vector Machines
下载PDF
导出
摘要 提出利用独立成分分析提取人脸特征并用核向量机进行识别的方法。独立成分分析能更本质地描述图像特征,通过选择合适的特征个数达到较高的识别准确率。利用核向量机进行分类判决,可以快速地对大样本数据进行准确分类,产生较少的支持向量。实验证明了该方法的可行性和有效性,在ORL人脸数据库上达到了94.38%的准确率。 This paper proposes an algorithm which adopts Independent Component Analysis(1CA) to extract face feature and Core Vector Machines(CVM) to recognize. ICA is used to extract statistical independent feature and a good result can be received by selecting right feature numbers. CVM is used to classify the feature and it can handle large data sets more quickly. Experimental results show that the algorithm is feasible and effective for face recognition, and ils accuracy is 94.38% on ORL.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第7期193-194,共2页 Computer Engineering
基金 国家自然科学基金资助项目"基于核向量机的油藏历史拟合代理模型研究"(40872087)
关键词 人脸识别 独立成分分析 核向量机 支持向量机 face recognition Independent Component Analysis(ICA) Core Vector Machines(CVM) Support Vector Machines(SVM)
  • 相关文献

参考文献5

  • 1Hyvarinen A, Oja E. Independent Component Analysis: Algorithms and Application[J]. Neural Networks, 2003, 13(4/5): 411-430.
  • 2Tsang I W, Kwok J T, Zurada J M. Generalized Core Vector Machines[J]. IEEE Transactions on Neural Networks, 2006, 17(5): 1126-1140.
  • 3李云峰,欧宗瑛.基于Gabor小波变换和支持向量机的人脸识别[J].计算机工程,2006,32(19):181-182. 被引量:5
  • 4Samaria F, Harter A. Parameterisation of a Stochastic Model for Human Face Identification[C]//Proc. of the 2nd IEEE Workshop on Applications of Computer Vision. Sarasota, FL, USA: [s. n.], 1994.
  • 5Tsang 1 W, Kocsor A, Kwok J T. Simpler Core Vector Machines with Enclosing Balls[C]//Proc. of the 24th International Conference on Machine Learning. Corvallis, Oregon, USA: [s. n.], 2007.

二级参考文献7

  • 1Daugman J.Uncertainty Relation for Resolution in Space,Spatial Frequency and Orientation Optimized by Two-dimensional Visual Cortical Filters[J].Journal of the Optical Society of America,1985,2(7):1160-1169.
  • 2Lee T S.Image Representation Using 2D Gabor Wavelets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(10):959-971.
  • 3Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 4Lades M,Vorbriiggen J C,Buhmann J,et al.Distortion Invariant Object Recognition in the Dynamic Link Architecture[J].IEEE Transactions on Computers,1993,42(3):300-311.
  • 5Schwenker F.Hierarchical Support Vector Machines for Multi-class Pattern Recognition[C].Proceedings of the 4^th International Conference on Knowledge-based Intelligent Engineering Systems &Allied Technologies,2000,2:561-565.
  • 6生物特征识别评测中心.生物特征识别算法竞赛方案[R].北京:中国科学院自动化研究所生物特征识别评测中心,2004.
  • 7Wiskott L,Fellous J M,Kriiger N,et al.Face Recognition by Elastic Bunch Graph Matching[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1997,19(7):775-779.

共引文献4

同被引文献159

引证文献21

二级引证文献147

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部