期刊文献+

基于加权量子粒子群的分类器设计 被引量:2

Design of Classifier Based on Weighted Quantum Particle Swarm
下载PDF
导出
摘要 针对支持向量机在大样本情况下训练速度慢的缺点,引入权重最优位置策略改进量子粒子群优化算法,通过改进的Michigan编码方案对语音参数进行编码,构造分类规则适应度函数实现基于加权量子粒子群的分类器设计。在说话人识别中的应用结果表明,该分类器具有较好的抗噪性能和较高的识别速度。 Aiming at the shortage of Support Vector Machine(SVM) slow practice speed in the case of large sample, this paper introduces weighted optimal position strategy to improve Quantum Particle Swarm Optimization(QPSO) algorithm, processes coding for voice parameters by improving Michigan coding scheme, and constructs new classified rule fitness function to realize designing of classifier based on weighted quantum particle swarm. Application results of speaker recognition show that this classifier has better performance of noise proof and recognition speed.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第7期203-204,207,共3页 Computer Engineering
基金 甘肃省自然科学基金资助项目(0803RJZA025) 甘肃省教育厅科研基金资助项目(0803-07)
关键词 说话人识别 支持向量机 量子粒子群优化 分类器 speaker recognition Support Vector Machine(SVM) Quantum Particle Swarm Optimization(QPSO) classifier
  • 相关文献

参考文献6

二级参考文献16

  • 1王存睿,段晓东,刘向东,周福才.改进的基本粒子群优化算法[J].计算机工程,2004,30(21):35-37. 被引量:43
  • 2Han J W, Kamber M. Data mining: concepts and techniques [M]. San Mateo, USA.. Morgan Kauf-mann Publishers, 2000. 185-211.
  • 3Yang L Y, Widyantoro D H, Ioerger T, et al. An entropy-based adaptive genetic algorithm for learning classifieation rules [A]. The 2001 Congress on Evolutionary Computation, Seoul, South Korea, 2001.
  • 4Carvalho D R, Freitas A A. A hybrid decision tree/genetic algorithm for coping with the problem of small disjuncts in data mining [A]. The Genetic and Evolutionary Computation Conference, Las Vegas, USA,2000.
  • 5Jiao L C, Wang L. A novel genetic algorithm based on immunity [J]. IEEE Transactions on Systems, Man Cybernetics , 2000,30 (5) : 552-561.
  • 6Kohavi R, Sahami M. Error-based and entropy-based diseretization of continuous features [A]. Second International Conference on Knowledge Discovery and Data Mining, Menlo Park, USA, 1996.
  • 7Hettich S, Bay S D. The UCI KDD archive [EB/OL].http://kdd. ics. uci. edu, 2000-04-26.
  • 8Weiss S M, Kullkowski C A. Computer systems that learn [M]. San Mateo, USA: Morgan Kaufmann Publishers, 1991.75-93.
  • 9Domingos P. Unifying instance-based and rule-based induction[J]. Machine Learning, 1996, 24(2): 141-168.
  • 10Holland J H.Genetic Algorithm and Classifier System:Foundations and Future Directions[C].In: Proceedings of the Second International Conference on Genetic Algorithms, Lawrence Erlbaum Associates, Publishers, 1987: 82-89

共引文献32

同被引文献16

  • 1Sahami M,Dumais S,Heckerman D,et al.A Bayesian Approach to Filtering Junk E-mail[C] //Proceedings of the AAAI Workshop on Learning for Text Categorization.Madison,Wisconsin,USA:[s.n.] ,1998.
  • 2Lee Weesun,Liu Bing.Learning with Positive and Unlabeled Examples Using Weighted Logistic Regression[C] //Proc.of the 20th International Conference on Machine Learning.Washington D.C.,USA:[s.n.] ,2003:448-455.
  • 3Bratko A,Filipi(c) B,Cormack G V,et al.Spam Filtering Using Statistical Data Compression Models[J].Machine Learning Research,2006,7:2673-2698.
  • 4Littlestone N.Learning Quickly When Irrelevant Attributes Abound:A New Linear-threshold Algorithm[J].Machine Learning,1988,2(4):285-318.
  • 5Hershkop S,Stolfo J.Combining Email Models for False Positive Reduction[C] //Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Chicago,Illinois,USA:[s.n.] ,2005:98-107.
  • 6Segal R,Crawford J,Kephart J,et al.SpamGuru:An Enterprise Anti-spam Filtering System[C] //Proceedings of the 1st Conference on Email and Anti-spam.California,USA:[s.n.] ,2004.
  • 7Li Yang,Fang Binxing,Li Guo.A Novel Online Spam Filter Based on URLs and Maximum Entropy Model[EB/OL].[2010-01-09].] http://www.ict.ac.cn/grope/down/07-09/1189134311.doc.
  • 8Lin Chih-jen,Weng R C,Keerthi S S.Trust Region Newton Method for Large-scale Logistic Regression[C] //Proceedings of the 24th International Conference on Machine Learning.Corvalis,Oregon,USA:[s.n.] ,2007:561-568.
  • 9Howard P G The Design and Analysis of Efficient Lossless Data Compression Systems[D].Rhode Island,USA:Brown University,1993.
  • 10Goodman J,Yih W T.Online Discriminative Spam Filter Training[C] //Proceedings of the 3rd Conference on Email and Anti-sparm.CA,USA:2006:27-28.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部