期刊文献+

粒子群优化算法的改进 被引量:12

Improvement of Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对粒子群优化算法搜索精度不高、对高维函数优化性能不佳的问题,提出一种改进的粒子群优化算法。以递增方式对粒子进行释放增强可利用的种群信息,通过释放粒子引导极值变化加强算法的运算效率。实验结果表明,与其他算法相比,改进算法具有更强的寻优能力和搜索精度,且适于高维复杂函数的优化。 Aiming at the problem that searching precision of Particle Swarm Optimization(PSO) is low and optimized performance is not well for high-dimension function, this paper proposes an improved PSO algorithm. The algorithm uses an orderliness increasing mode to set particle free, enhances the useful population information, leads extreme change through release particle to strengthen computational efficiency of algorithm. Experimental results show that improved algorithm has more powerful optimizing ability and higher optimizing precision compared with other algorithms.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第7期205-207,共3页 Computer Engineering
基金 宁波市自然科学基金资助项目(2008A610002 2009A610090) 浙江教育厅基金资助项目(Y200803228)
关键词 粒子群优化 大规模函数优化 释放粒子 极值变化 Particle Swarm Optimization(PSO) large-scale function optimization release particle extreme change
  • 相关文献

参考文献6

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc. of IEEE International Conference on Neural Networks. Perth, Australia: IEEE Press, 1995.
  • 2Bergh F D, Engelbrecht A P. A Study of Particle Swarms Optimization Particle Yrajectories[J]. lnforlnation Sciences, 2006, 176(8): 937-971.
  • 3Xie Xiaofeng, Zhang Wenjun, Yang Zhilian. A Dissipative Particle Swarm Optimization[C]//Proc. of CEC'02. Honolulu, USA: [s. n.], 2002.
  • 4Chen Xin, Li Yangmin. A Modified PSO Structure Resulting in High Exploration Ability with Convergence Guaranteed[J]. IEEE Transactions on Systems, Man and Cybernetics, 2007, 37(5): 1271-1289.
  • 5Liang J J, Qin A K, Suganthan P N, et al. Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295.
  • 6Zhihua Cui,Xingjuan Cai,Jianchao Zeng,Guoji Sun.Apical-dominant particle swarm optimization[J].Progress in Natural Science:Materials International,2008,18(12):1577-1582. 被引量:3

二级参考文献13

  • 1[1]Eberhart R,Kennedy J.A new optimizer using particle swarm theory.In:Proceedings of sixth international symposium on micro machine and human science;1995,p.39-43.
  • 2[2]Kennedy J,Eberhart R.Particle swarm optimization.In:Proceedings of the IEEE international conference on neural networks,Piscataway,NJ;1995,p.1942-8.
  • 3[3]Shen HY,Peng XQ,Wang JN.A mountain clustering based on improved PSO algorithm.In:Proceedings of the first international conference on natural computation.Berlin:Springer;2005.
  • 4[4]Eberhart RC,Shi Y.Extracting rules from fuzzy neural network by particle swarm optimization.In:Proceedings of IEEE international conference on evolutionary computation,Anchorage,Alaska;1998,p.1110-4.
  • 5[5]Li QY,Shi ZP,Shi J,et al.Swarm intelligence clustering algorithm based on attractor.In:Proceedings of the first international conference on natural computation.Berlin:Springer;2005,p.496-504.
  • 6[6]Reynolds CW.Flocks,herds,and schools:a distributed behavioral model.Comput Graph 1987;21(4):25-34.
  • 7[7]Kennedy J.Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance.In:Proceedings of the 1999 congress on evolutionary computation.USA:IEEE Service Center;1999,p.1931-8.
  • 8[8]Lφvbjerg M,Rasmussen TK,Krink T.Hybrid particle swarm optimiser with breeding and subpopulations.In:Proceedings of the third genetic and evolutionary computation conference.USA:IEEE Service Center;2001,p.201 5.
  • 9[9]Riget J,Vesterstrφm JS.A diversity-guided particle swarm optimizer.EVALife Technical Report No.2002-02,2002.
  • 10[10]Champagnat P.Formation of the trunk in woody plants.Tropical trees as living systems.Cambridge:Cambridge University Press;1978.

共引文献2

同被引文献96

引证文献12

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部