期刊文献+

基于邻接表的非结构网格快速生成算法

Fast Generation of Unstructured Mesh Based on Adjacency List
下载PDF
导出
摘要 目的优化Delaunay方法,提高网格生成效率并通过拉普拉斯光顺化提高网格质量.方法用图这种数据结构来表示三角形网格并用邻接表存储以优化存储方式.结果该数据结构同传统结构数组算法相比时间大大缩短、提高了网格生成效率.从网格生成的算例看出,该算法不仅提高了网格生成的速度,而且生成的网格质量较好,便于局部加密.结论通过用图表示三角形网格并用邻接表优化储存,提高了网格生成效率.将生成的网格进行拉普拉斯光顺化,可使网格质量得到进一步的提高. The generation of unstructured triangle/tetrahedral mesh is the precondition to solve the fluid flow and heat transfer in complex domain. It is of great importance to develop fast generation algorithm of unstructured mesh. According to the characteristics of Delaunay triangulation method, a fast algorithm to create unstructured mesh is proposed. In this method, triangle structure is presented by Graph and the data is stored by Adjacency List, through which the neighbor triangles can be easily found since their addresses are stored in each node. Meanwhile the time consuming of deletion, insertion and sorting operation can be saved considerably because of the property of list. Compared with the traditional algorithm based on structured array, the efficiency of the new algorithm to generate unstructured mesh can be improved dramatically. From the generated meshes, it is shown that with the new algorithm, not only the generation speed is increased, but also the quality of the mesh is better and easy to be refined. Finally, the generated mesh is smoothed by Laplace method and the mesh quality can be further improved.
作者 陈斌 徐娜
出处 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2010年第2期380-384,共5页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家自然科学基金项目(50976087 50821064) 高等学校博士学科点专项科研基金课题(20090201110001)
关键词 非结构化网格 Delaunay方法 邻接表 光顺化 unstructured mesh Delaunay adjacency list mesh smoothing
  • 相关文献

参考文献11

  • 1Anderson W K.A grid generation and flow solution method for the Euler equation on unstructured grids[J].J.Comp.Phys,1994,110(1):23-28.
  • 2Weatherill N P,Hassan O.Efficient three-dimensional delaunay triangulation with automatic point creation and imposed boundary constraints[J].Int.J.of Numerical Methods in Engineering,1994,37(2):2005-2039.
  • 3Sohler C.Fast reconstruction of delaunay triangulations[J].Computational Geometry:Theory and Applications,2005,31(3):166-178.
  • 4Cheng S W,Poon S H.Three-dimensional delaunay mesh generation[J].Discrete & Computational Geometry archive,2006,36(3):419-456.
  • 5Chen M B,Chuang T R,Wu J J.Parallel divide-and-conquer scheme for 2D delaunay triangulation[J].Concurrency and Computation:Practice and Experience,2006,18(12):1595-1612.
  • 6Morrison P,Zou J J.Triangle refinement in a constrained Delaunay triangulation skeleton[J].Pattern Reco gnition,2007,40(10):2754-2765.
  • 7陈斌,郭烈锦.非结构化网格快速生成技术[J].西安交通大学学报,2000,34(1):18-21. 被引量:13
  • 8高晓沨.2D-Delaunay三角网格的数据结构与遍历[J].天津理工大学学报,2006,22(2):66-69. 被引量:13
  • 9李水乡,陈斌,赵亮,刘曰武.快速Delaunay逐点插入网格生成算法[J].北京大学学报(自然科学版),2007,43(3):302-306. 被引量:19
  • 10严蔚敏 吴伟民.数据结构[M].北京:清华大学出版社,2000.120-126.

二级参考文献20

  • 1丁永祥,夏巨谌,王英,肖景容.任意多边形的Delaunay三角剖分[J].计算机学报,1994,17(4):270-275. 被引量:83
  • 2闵卫东,唐泽圣.二维任意域内点集的Delaunay三角划分的研究[J].计算机学报,1995,18(5):357-364. 被引量:62
  • 3苏铭德 黄素逸.计算流化力学基础[M].北京:清华大学出版社,1997..
  • 4陶文铨.数据值传热学[M].西安:西安交通大学出版社,1986..
  • 5[2]JIM RUPPERT.A delaunay refinement algorithm for quality2-Dimensional mesh generation[J].NASA Ames Research Center,1994,24 (2):1-46.
  • 6[3]HOUMAN BOROUCHAKI.Paul louis george.aspects of2D delaunay mesh generation[J].International Journal For Numerical Methods in Engineering,1997,40:1957 -1975.
  • 7苏铭德,计算流体力学基础,1997年
  • 8严蔚敏,数据结构(第2版),1992年
  • 9陶文铨,数值传热学,1986年
  • 10胡恩球,张新访,向文,周济.有限元网格生成方法发展综述[J].计算机辅助设计与图形学学报,1997,9(4):378-383. 被引量:98

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部