期刊文献+

色散效应对光学参量放大器量子起伏特性的影响

Quantum fluctuations of the optical parametric amplification system under the consideration of dispersion
原文传递
导出
摘要 解析求解了包含色散、损耗和抽运吃空的含时的Fokker-Planck方程,通过数值计算首先获得了色散时简并参量放大(DOPA)系统的光压缩特性.研究结果表明:色散效应是由非线性极化率从χ″增大到χ″(1+σ2)~(1/2)而引起的.随着色散效应的逐渐增大,压缩曲线的形状基本相同,且整体向左收缩,最大压缩趋近于线性理论的结果1/(1+μ).还获得了色散时非简并参量放大(NOPA)系统的光纠缠特性.研究发现:当σ给定,随着抽运参数μ的增大,相应的相位变化也增大,非线性极化率的极性发生多次变化,极性为正阶段的增益大部分被极性为负阶段的衰减所抵消,净增益不大,压缩也不大,最小均方差V1的值逐渐减小,且整体向右移动,接近于线性理论的结果1/(1+μ). In this paper,we first find out the analytic solution of the time-dependent Fokker-Planck equation of the non-degenerate optical parametric amplification(NOPA) system under the consideration of the dispersion,the loss and the pump depletion effects.Then,through the numerical calculation,we obtain the squeezing characteristic of the degenerate optical parametric amplification(DOPA) system with dispersion.the research indicates:the dispersion effect stems from the nonlinear susceptibility change from χ″ to χ″(1+σ2)~(1/2),with the increasing of the dispersion effect,the general feature of the squeezing curves beeps unchanged,and the curves contract toward left.The maximum squeezing approaches to the linear theory 1 /(1 + μ).Finally,we obtain the entanglement characteristic of the NOPA system with dispersion.We find out when σ is given,with the increasing of pump parameter μ,the corresponding phase makes a large change.The nonlinear susceptibility changes many times.When the polarity is positive,the system obtains the gain,when the polarity is negative,the system suffers the loss,but the gain is mainly dissipated by the loss,so the net gain is small,the squeezing is also small.The minimum variance V1 reduces gradually,and the whole curve moves to the right,approaches to the linear theory 1/(1+μ).
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第4期2498-2504,共7页 Acta Physica Sinica
基金 山西省自然科学基金(批准号:2006011003)资助的课题~~
关键词 色散 量子起伏 光学参量放大器 dispersion quantum fluctuation optical parametric amplification
  • 相关文献

参考文献24

  • 1Braunstein S L, Loock P V 2005 Rev. Mod. Phys. 77 513.
  • 2Furusawa A, Sφrensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706.
  • 3Li X, Pan Q, Jing J, Zhang J, Xie C, Peng K 2002 Phys. Rev. Lett. 88 047904.
  • 4Zhang J, Xie C D, Peng K C 2003 Europhys. Lett. 61 579.
  • 5Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321.
  • 6Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goβler S, Danzmann K, Schnabel R 2008 Phys. Rev. Lett. 100 033602.
  • 7Hetet G, Glockl O, Pilypas K A, Harb C C, Buchler B C, Bachor H A, Lam P K 2007 J. Phys. B: At. Mol. Opt. Phys. 40 221.
  • 8Kim C, Kumar P 1994 Phys. Rev. Lett. 73 1605.
  • 9Hirano T, Kotani K, Ishibashi T, Okude S, Kuwamoto T 2005 Opt. Lett. 30 1722.
  • 10Eto Y, Tajima T, Zhang Y, Hirano T 2007 Opt. Lett. 32 1698.

二级参考文献33

  • 1翟泽辉,李永明,王少凯,郭娟,张天才,郜江瑞.连续变量量子离物传态的实验研究[J].物理学报,2005,54(6):2710-2716. 被引量:14
  • 2马红亮,卫栋,叶晨光,张靖,彭堃墀.利用周期性极化KTiOPO_4晶体参量缩小过程产生明亮振幅压缩光[J].物理学报,2005,54(8):3637-3640. 被引量:7
  • 3Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278
  • 4Li Y Q, Guzun D, Xiao M 1999 Phys. Rev. Lett. 28 5225
  • 5Schnabel R, Harms J, Strain K A et al 2004 Class. & Quantum Grav. 21 10d-5
  • 6Wang H, Xie C D, Pan Q et al 1996 Proceedings of the Third International Conference on Quantum Communication & Measurement (Hakane, Japan)
  • 7Kilper D C, Schaefer A C, Erland J et al 1996 Phys. Rev. A 54 1755
  • 8Souto R P, Schwob C, Maitre A et al 1997 Opt. Lett. 22 1893
  • 9Marin F, Bramati A, Jost V et al 1997 Opt. Commun. 140 146
  • 10Appel J, Figueroa E, Korystov D et al 2007 arXiv: 0709.2258 [ quant- ph]

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部