期刊文献+

逆体积排阻层析法测定层析介质的孔径分布 被引量:3

Determination of pore size distribution of porous media by inverse size-exclusion chromatography
下载PDF
导出
摘要 针对层析介质的孔径分析,基于刚性球状分子进入柱状孔的假设,分别采用高斯正态分布和对数正态分布描述孔径分布,利用简化的单孔分配因子模型,建立了孔径分布函数和分配因子Kd的关联,通过体积排阻层析实验测定系列标准物的Kd,从而拟合得到孔径分布信息,建立了逆体积排阻层析法。以葡聚糖作为分子大小的标准物,测定了5种典型层析介质(SP Sepharose FAST FLOW、Q Sepharose FAST FLOW、ToyopearlDEAE-650M、Streamline DEAE和Sephadex G-150)的Kd,计算和比较了不同介质的孔径分布,分析了介质的可吸附孔表面积等结构参数,证实了逆体积排阻层析法分析层析介质孔径分布的可行性和实用性。 The method of inverse size-exclusion chromatography(ISEC)was established to determine the pore size distribution(PSD)of porous chromatographic media.Two well-known pore size distribution(PSD)models,Gaussian distribution and log-normal distribution,were investigated in the present work.The most used local partition coefficient model was adopted with the assumption of rigid spherical solutes in the cylindrical pores.Then the relationship between PSD and the theoretical distribution coefficient Kd was established.After the measurement of Kd with a series of molecule standards by size-exclusion chromatography,the information of PSD could be obtained with the correlation of calculated Kd to the experimental data.In the present work,Kd of five typical chromatographic media,SP Sepharose FAST FLOW,Q Sepharose FAST FLOW,Toyopearl DEAE-650M,Streamline DEAE and Sephadex G-150,were measured by using dextrans as the standards.Then the PSDs of five media tested were determined by the method of ISEC.The model calculation fitted well with the experimental data,and the PSDs of different media were analyzed.In addition,the accessible internal pore surface area was calculated and discussed.The results demonstrated that ISEC is a feasible method to determine the PSD of porous chromatographic media.
出处 《化工学报》 EI CAS CSCD 北大核心 2010年第4期867-874,共8页 CIESC Journal
基金 国家自然科学基金项目(20776129 20976154) 新世纪优秀人才支持计划项目~~
关键词 逆体积排阻层析 层析介质 孔径分布 分配因子 inverse size-exclusion chromatography chromatographic media pore size distribution distribution coefficient
  • 相关文献

参考文献17

  • 1Hagel L, Ostberg M, Andersson T. Apparent pore size distributions of chromatography media. J. Chromatography A, 1996, 743:33-42.
  • 2Yao Y, Lenhoff A M. Pore size distributions of ion exchangers and relation to protein binding capacity. J.Chromatography A, 2006, 1126:107-119.
  • 3Kopaciewicz W, Fulton S, Lee S Y. Influence of pore and particle size on the frontal uptake of proteins: implications for preparative anion exchange chromatography. J. Chromatography A, 1987, 409.
  • 4Waiters R R. High performance affinity chromatography pore size effects. J. Chromatography A, 1982, 249: 19- 28.
  • 5DePhillips P, Lenhoff A M. Determinants of protein retention characteristics on cation-exchange adsorbents. J. ChromatographyA, 2001, 93;3:57- 72.
  • 6Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60: 309 -319.
  • 7Ritter H L, Drake L C. Pressure porosimeter and determination of complete maeropormsize distributions. Ind. Eng. Chem. Anal. Ed., 1945, 17:782 -786.
  • 8Kuga S. Pore size distribution analysis of gel substances by size exclusion chromatography. J. Chromatography A, 1981, 206:449- 461.
  • 9Ousalem M, Zhu X X, Hradil J. Evaluation of the porous structures of new polymer packing materials by inverse size exclusion chromatography. J. Chromatography A, 2000, 903:13-19.
  • 10Dephillips P, Lenhoff A M. Pore size distributions of cation-exchange adsorbents determined by inverse size exclusion chromatography. J. Chromatography A, 2000,883:39-54.

同被引文献16

  • 1Ali I, Aboul-Enein H Y, Singh P, Singh R, Sharma B. Separation of biological proteins by liquid chromatography [J].Saudi Pharmaceutical Journal, 2010, 18 (2):59-73.
  • 2Levison P R. Large-scale ion-exchange column chromatography of proteins: comparison of different formats [J]. Journal of ChrornatographyB, 2003, 790 (1/2): 17- 33.
  • 3Kopaciewicz W, Regnier F E. Mobile phase selection for the high-performance ion-exchange chromatography of proteins [J].Analytical Biochemistry, 1983, 133 (1) : 251-2S9.
  • 4Franke A, Forrer N, Butte A, Cvijetic B, Morbidelli M, Johnck M, Schulte M. Role of the ligand density in cation exchange materials for the purification of proteins [ J ]. Journal of Chromatography A, 2010, 1217 (15): 2216- 2225.
  • 5Hardin A M, Harinarayan C, Malmquist G, Axen A, Van Reis R. Ion exchange chromatography of monoclonal antibodies: effect of resin ligand density on dynamic binding capacity [J]. Journal of Chromatography A, 2009, 1216 (20) : 4366-4371.
  • 6Meeue J T, Engel P, Thommes J. Effect of phenyl Sepharose ligand density on protein monomer/aggregate purification and separation using hydrophobic interaction chromatography [J]. Journal of Chromatography A, 2009, 1216 (6): 902-909.
  • 7Wrzosek K, Gramblieka M, Polakovie M. Influence of ligand density on antibody binding capacity of cation- exchange adsorbents [J]. Journal of Chromatography A, 2009, 1216 (25): 5039-5044.
  • 8Zhang L, Zhao G, Sun Y. Effects of ligand density on hydrophobic charge induction chromatography: molecular dynamics simulation[J]. Journal of Physical ChemistryB, 2010, 114 (6): 2203-2211.
  • 9Xia H F, Lin D Q, Yao S J. Chromatographic performance of macroporous cellulose-tungsten carbide composite beads as anion-exchanger for expanded bed adsorption at high fluid velocity [J]. Journal of Chromatography A, 2008, 1195 (1/2) : 60-66.
  • 10Chen WD, Dong X Y, Sun Y. Analysis of diffusion models for protein adsorption to porous anion-exchange adsorbent [J]. Journal of Chromatography A, 2002, 962 (1/2): 29-40.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部