摘要
电力系统运行中约束条件的多样性和复杂性很容易造成优化问题非凸和多峰,传统的优化方法很容易落入局部最优解中。填充函数可以使最优解跳出局部最优,以更大的可能性得到全局最优值。文中将全局的填充函数方法结合原对偶内点法应用于电力系统最小静态负荷裕度计算。传统负荷增长裕度的计算需要预先给定负荷增长方向,文中提出了一种可以考虑不同负荷增长方向的计算模型,只要给定负荷增量的功率因数,就可以求得最小静态负荷裕度及相应的负荷增长方向。此模型非凸并且负荷裕度边界超平面是多峰的,填充函数的使用可以有效避免局部最优。算例计算说明了该模型和求解方法的有效性,具有很好的实用价值。
Due to the variety and complexity of constraints in power systems, the optimization problem of system operation can be nonconvex and multimodal. The traditional optimization method is very likely to be trapped in local optimum. The filled function method is an effective global optimization method for multimodal problems. In this paper, this method is used for the computation of the closest load margin for power system operations. The distance in the load power parameter space to the locally closest loading boundary is an index of system security and can provide useful information for arranging load sites and making full utilization of the generation sources. The traditional load power margin is computed by assuming a direction of load increase in load parameter space. In this paper, a closest load power margin computation model considering various load increase directions is proposed. While the load increase power factor is provided, the closest load margin from the loading boundary to the given operating load power can be computed. The test results show that the model and filled function method is effective. The introduction of filled function can help the optimization search process to jump out of the local optimum and more likely obtain the global optimal solution.
出处
《电力系统自动化》
EI
CSCD
北大核心
2010年第6期26-31,共6页
Automation of Electric Power Systems
基金
国家重点基础研究发展计划(973计划)资助项目(2004CB217905)
西安交通大学校长科研基金资助项目(0400011211)~~
关键词
静态负荷裕度
原对偶内点法
全局最优
填充函数
static load power margin
primal-dual interior method
global optimum
filled function