期刊文献+

一类拟线性椭圆方程的多重非负解

Multiplicity of Nonnegative Solutions for Some Quasilinear Elliptic Equations
原文传递
导出
摘要 研究一类拟线性椭圆方程的非负解的多重性。利用非线性项在无穷远处与零点处的渐近行为,应用Ekeland变分原理与山路引理得到2个非平凡的非负解。 This paper is concerned with the multiplicity of nonnegative solutions of some quasilinear elliptic equations.Using the asymptotic behavior of the nonlinear-ity at infinity and at zero,we obtained two nontrivial nonnegative solutions by the Ekeland variational principle and mountain pass theorem.
作者 应惠芬
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第5期161-164,共4页 Journal of Wuhan University of Technology
关键词 拟线性椭圆方程 非负解 多重性 EKELAND变分原理 山路引理 quasilinear elliptic problems nonnegative solutions multiplicity Ekeland variational principle mountain pass theorem
  • 相关文献

参考文献12

  • 1Lindqvist P. On the Equation, - div( | u | ^p- 2 u ) + λ | u |^ p- 2 u = 0 [J ]. Proc Amer Math Soc, 1990,109 : 157-164.
  • 2Ambrosetti A, Azorero J G, Peral I. Multiplicity Results for Some Nonlinear Elliptic Equations[J]. J Funct Anal, 1996,137: 219-242.
  • 3Ambrosetti A, Brezis H, Cerami G. Combined Effects of Concave and Convex Nonlinearities in Some Elliptic Problems[J ]. J Funct Anal, 1994,122 : 519-543.
  • 4Bartsch T, Willem M. On an Elliptic Equation with Concave and Convex Nonlinearities[J]. Proc Amer Math Soc, 1995,123: 3555-3561.
  • 5Figueiredo de D G, Gossez J P, Ubilla P. Local "Superlinearity" and "Sublinearity" for the p-Laplacian[J]. J Funct Anal, 2009,257 : 721-752.
  • 6Garcia Azorero J P, Peral Alonso I, Manfredi J J. Sobolev Versus Holder Local Minimizers and Global Multiplicity for Some Quasilinear Elliptic Equations[J ]. Commum Contemp Math, 2000(2) : 385-404.
  • 7Kyritsi S T, Papageorgiou N S, Pairs of Positive Solutions for p-Laplacian Equations with Combined Noulinearities[J ]. Commun Pure Appl Anal,2009(8) :1031-1051.
  • 8Perera K. Multiplicity Results for Some Elliptic Problems with Concave Nonlinearities[J]. J Differential Equations, 1997,140: 133-141.
  • 9Li S J, Wu S P, Zhou H S. Solutions to Semilinear Elliptic Problems with Combined Nonlinearities[J]. J Differential Equantions, 2002,185 : 200-224.
  • 10Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations[ M]//CBMS Regional Conference Series in Mathematics 65. [ S. l. ] :American Mathematical Society, Providence, RI, 1986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部