期刊文献+

具临界非线性项的随机非线性Schrdinger方程的整体解

Global Solution for the Stochastic Nonlinear Schrdinger Equation with Critical Nonlinear Term
下载PDF
导出
摘要 在二维空间中,讨论带调和势且具临界非线性项的一类随机非线性Schrdinger方程的Cauchy问题,在能量空间中研究其解整体存在的充分条件.借助于随机分析及偏微分方程的基本理论,利用It幃公式、鞅不等式和Gagliardo-Nirenberg不等式,通过估计能量泛函的期望得到在初值充分小时,Cauchy问题的解是整体存在的. We discuss the Cauchy problem of the critical stochastic nonlinear Schrdinger equation with a harmonic potential in two dimensional space.By using Itó formula,Martingale inequality,Gagliardo-Nirenberg inequality,and estimating the expectation of energy functional,we derive global existence of the solution for the equation with sufficiently small initial data.
作者 李姣 张健
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期143-145,共3页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10747148 19771151)资助项目
关键词 非线性Schrdinger方程 调和势 加性噪声 基态 整体解 nonlinear Schrdinger equation harmonic potential additive noise ground state global solution
  • 相关文献

参考文献10

  • 1de Bouard A,Debussche A.Finite time blow-up in the additive supercritical stochastic nonlinear Schr(o)dinger equation:the real noise case[J].Contemp Math,2002,301:183-194.
  • 2de Bouard A,Debussche A.The stochastic nonlinear Schr(o)dinger equation in H^1(R^N)[J].Stochastic Anal Appl,2003,21:97-126.
  • 3de Bouard A,Debussche A.On the effect of a noise on the solutions of the focusing supercritical nonlinear Schr(o)dinger equation[J].Probab Theory Related Fields,2002,123:76-96.
  • 4de Bouard A,Debussche A.Blow-up for the stochastic nonlinear Schr(o)dinger equation with multiplicative noise[J].Annals Probability,2005,33(3):1078-1110.
  • 5Zhang J.Stability of attractive Bose-Einstein condensates[J].J Stat Phys,2000,101(3/4):731-746.
  • 6Oh Y G.Cauchy problem and Ehrenfest's law of nonlinear Schr(o)dinger equations with potentials[J].J Diff Eqns,1989,81:255-274.
  • 7Carles R.Remark on nonlinear Schr(o)dinger equations with harmonic potential[J].Ann Henri Poincaré,2002,3:757-772.
  • 8Weinstein M I.Nonlinear Schr(o)dinger equations and sharp interpolations estimates[J].Commun Math Phys,1983,87:567-576.
  • 9Cazenave T.An introduction to nonlinear Schr(o)dinger equations[C]//Rio de Janeiro:Instituto de Matematica-UFRJ,1996.
  • 10da Prato G,Zabczyk J.Stochastic equations in infinite dimensions[M].Cambridge:Cambridge University Press,1992.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部