期刊文献+

一类带非局部项的Allen-Cahn方程解的存在性 被引量:2

The Existence of Solutions for a Class of Allen-Cahn Equations with Nonlocal Term
下载PDF
导出
摘要 从图像处理中的修复、去噪与分割等问题出发,结合两相流的数学理论,提出了一类具有非局部项的Allen-Cahn方程的初边值问题,该方程与经典的Allen-Cahn方程相比,最大的不同之处是主部含有非局部项,然后利用Schauder不动点定理得到了带非局部项的Allen-Cahn方程初边值问题解的存在性. In this paper,inspiring from the study on the reconstruction,denoising and segmentation in image processing,and combining with the theory of two phase fluids,the initial-boundary value problem for a class of Allen-Cahn equations with nonlocal term is introduced.Compared with the classical Allen-Cahn equation,this equation has the biggest difference in the principal part including the non-partial item.By using the Schauder fixed point theorem,the existence of weak solutions to the initial boundary value problem for the nonlocal Allen-Cahn equation is proved.
作者 刘桂兰
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期184-187,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10971181) 江苏省高校自然科学基金(07KJD110226)资助项目
关键词 Allen-Cahn方程 非局部项 初边值问题 Allen-Cahn equation nonlocal term initial-boundary value problem
  • 相关文献

参考文献21

  • 1Allen S M,Cahn J W.A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J].Acta Metall,1979,27:1084-1095.
  • 2Rubinstein J,Sternberg P,Keller J B.Fast reaction,slow diffusion and curve shortening[J].SIAM J Appl Math,1989,49:116-133.
  • 3Fife P C.Dynamics for internal layers and diffusive interfaces[C]//CBMS-NSF Regional Conf Ser Appl Math.Philadelphia:SIAM,1988.
  • 4Bronsard L,Kohn R.Motion by mean curvature as the singular limit of Ginzburg-Landau model[J].J Diff Eqns,1991,90:211-237.
  • 5de Mottoni P,Schatzman M.Development of interfaces in R^n[J].Proc Roy Soc Edinb,1990,A116:207-220.
  • 6de Mottoni P,Schatzman M.Geometrical evolution of developed interfaces[J].Trans Am Math Soc,1995,347:1533-1589.
  • 7Chen X.Generation and propagation of interfaces for reaction-diffusion equations[J].J Diff Eqns,1992,96:116-141.
  • 8Evans L C,Soner H M,Souganidis P M.Phase transitions and generalized motion by mean curvature[J].Commun Pure Appl Math,1992,45:1097-1123.
  • 9Ilmanen T.Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature[J].J Diff Geom,1993,38:417-461.
  • 10Ladyzenskaya O A,Solonnikov V A,Ural'tzeva N N.Linear and Quasilinear Parabolic Equations[M].Providence:Am Math Soc,1968.

二级参考文献15

  • 1张慧,徐红英.关于一类非局部抛物方程组解的整体存在与爆破[J].四川师范大学学报(自然科学版),2005,28(6):671-673. 被引量:3
  • 2Chadam J M,Yin H M.J Integral Equations Appl,1989,2(1):31-47.
  • 3Chadam J M,Peirce A,Yin H Y.J Math Anal Appl,1992,169(2):313-328.
  • 4Li F C,Chen Y P,Xie C H.Acta Math Sci Ser B Engl Ed,2003,23:261-273.
  • 5Li F C,Huang S X,Xie C H.Discrete Continu Dynam System,2003,9:1519-1532.
  • 6Souplet P.SIAM J Math Anal,1998,29:1301-1334.
  • 7Souplet P.J Differential Equations,1999,153(2):374-406.
  • 8Wang M X,Wang Y M.Math Meth Appl Sci,1996,19:1141-1156.
  • 9Xiang Z Y,Hu X G,Mu C L.Nonlinear Analysis,2005,61:1209-1224.
  • 10Pedersen M,Lin Z G.Nonlinear Analysis,2002,50:1013-1024.

共引文献2

同被引文献11

  • 1Cahn J W, Hilliard J E. Free Energy of a Nonuniform System I. Interfacial Free Energy [J]. Journal of Chemical Physics, 1958, 28(2) :258-267.
  • 2Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics [M]. New York: Springer-Verlag, 1998.
  • 3Dlotko T. Attractor for the Cahn-Hilliard Equation in H2and H3 [J].Journal of Differential Equations, 1994, 113 (2): 381-393.
  • 4Elliott C M, Gareke H. On the Cahn-Hilliard Equation with Degenerate Mobility[J].SIAM Journal on Mathe- matical Analysis, 1995, 27(2) : 404-423.
  • 5Cahn J W. On Spinodal Decomposition [J]. Acta Metallurgica, 1961,9(9) :795-801.
  • 6Cahn J W, Hilliarcl J E. Spinodal Decomposition: a reprise [J]. Acta Metallurgica, 1971,19(2) : 151-161.
  • 7Da Prato G, Debussche A. Stochastic Cahn-Hilliard Equation [J]. Nonlinear Analysis, 1996, 26 (2).. 241-263.
  • 8Ludovic Goudenege. Stochastic Cahn-Hilliard Equation with Singular Nonlinearity and Reflection [J]. stochastic Processes and Their Applications, 2009, 119 (10) ..3516-3548.
  • 9徐宏武,李小龙.一类高阶非线性微分方程的正周期解[J].四川师范大学学报(自然科学版),2010,33(2):193-195. 被引量:4
  • 10罗宏,蒲志林.EXISTENCE AND REGULARITY OF SOLUTIONS TO MODEL FOR LIQUID MIXTURE OF ^3HE-^4HE[J].Acta Mathematica Scientia,2012,32(6):2161-2175. 被引量:4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部