期刊文献+

基于适应值的粒子群优化改进 被引量:6

Improvement of particle swarm optimization based on fitness value
下载PDF
导出
摘要 为了提高粒子群优化算法的收敛速度和搜索精度,提出一种基于粒子适应值来设置动态收敛因子的方法(FPSO),根据粒子当前适应值和目标值之间差值的变化设置动态收敛因子,弥补了当前仅靠经验设置收敛因子的不足,实现了适应值对收敛因子的有效扰动。同时,提出一种基于维度最大位移量的局部优化激活方法,使得新算法能快速的从局部优化中跳出。通过4个经典函数对改进的算法进行测试,结果表明了改进后算法的有效性。 In order to improve the convergence velocity and accuracy, the dynamic convergence factor based on the fitness value is introduced into the improved algorithm(FPSO) according to the difference between the present fitness value and the target value.The new algorithm corrects the defect that the setting of the dynamic convergence factor just depends on the experience only, and the dynamic convergence factor is disturbed effectively by the fitness value in the FPSO.Then, the method based on the max displacement on dimensions is presented, and it makes the new algorithm can jump out form the local optimization quickly.The validity of the improved algorithm is proved by four classical functions.
作者 吴亮 蒋玉明
出处 《计算机工程与设计》 CSCD 北大核心 2010年第6期1283-1285,1289,共4页 Computer Engineering and Design
关键词 粒子群优化算法 适应值 动态收敛因子 维度最大位移 局部优化激活 particle swarm optimization algorithm fitness value dynamic convergence factor max displacement on dimensions local optimization activation
  • 相关文献

参考文献10

  • 1Kennedy J,Eberhart R C,Particle swarm optimization[C].Proc IEEE Int Conf Neural Networks,1995:1942-1948.
  • 2Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C].Japan:Proc 6th Int Syrup Micromachine Human Sci Nagoya,1995:39-43.
  • 3李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:303
  • 4龚燕.粒子群优化算法的研究与改进[D].成都:四川大学,2009:13-15.
  • 5朱玉平.一种改进粒子群优化算法[J].计算机技术与发展,2008,18(11):106-108. 被引量:6
  • 6Shi Y,Eberhart R C.A modified particle swarm optimizer[J].Proceedings of IEEE International Conference on Evolutionary Computation(ICEC'98),1998:69-73.
  • 7Clere M.The swarm and the Queen:Towards a deterministic and adaptive particle swarm optimization[C].Piscataway,NJ:Proc of the Congress of Evolutionary Computation,1999:1951-1957.
  • 8Shi Y,Eberhart R.C.Fuzzy adaptive particle swarm optimization[C].Proceedings of the 2001 Congress on Evolutionary Computation.Piscataway,NJ,USA:IEEE,2001,1:101-106.
  • 9Trelea I C.The particle swarm optimization algorithm:convergence analysis and parameter selection[J].Information Processing Letters,2003,85(6):317-325.
  • 10范培蕾,张晓今,杨涛.克服早熟收敛现象的粒子群优化算法[J].计算机应用,2009,29(B06):122-124. 被引量:14

二级参考文献9

  • 1张劲松,李歧强,王朝霞.基于混沌搜索的混和粒子群优化算法[J].山东大学学报(工学版),2007,37(1):47-50. 被引量:21
  • 2Kennedy J, Eberhart R C. Particle swarm optimization[C]// Proceeding of 1995 IEEE International Conference on Neural Networks. New York, NY, USA: IEEE, 1995: 1942- 1948.
  • 3Eberhart R C, Kennedy J. A new optimizer using partide swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. New York, NY,USA: IEEE, 1995 : 39 - 43.
  • 4Shi Y H, Eberhart R. Parameter selection in partide swarm optimization[C]//Proc of the 7th Annual Coal on Evolutionary Programming. Washington D C: [ s. n. ], 1998:591 - 600.
  • 5Shi Y, F_.lxrhart R C. A modified particle swarm optimizer [C]//Proceedings of 1998 IEEE International Conference on Evolutionary Computation. New York, NY, USA: IEEE, 1998:69 - 73.
  • 6Shi Y,Eberhart R C. Empirical study of particle swarm optimization[ C]//Proccedings of the Congresson Evolutionary Computation. Piscataway, NJ: IF EE Service Center, 1999- 1945 - 1950.
  • 7Bergh F, Engdbreeht A P. A Cooperative Approach to Particle Swarm Optimization [ J ]. IEEE Trans. on Evolutionary Computation, 2004,8 ( 3 ) : 225 - 239.
  • 8吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法[J].计算机学报,2001,24(12):1328-1333. 被引量:247
  • 9张丹,李长河.基于混沌的粒子群优化算法研究与进展[J].软件导刊,2007,6(6):109-110. 被引量:7

共引文献319

同被引文献58

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 2窦全胜,周春光,徐中宇,潘冠宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2006,43(1):89-95. 被引量:20
  • 3Kennedy J, Eberhart R. Particle Swarm Optimization[C]// Proc of the IEEE Int'l Conf on Neural Networks, 1995: 1942-1948.
  • 4Eberhart R C, Kenned Y J. A New Optimizer Using Particle Swarm Theory[C]//Proc of the 6th Int'l Symp on Micro Machine and Human Science, 1995:39- 43.
  • 5Kassabalidis I, Sharkawi E I, Marks M A, et al. Adaptive- SDR: Adaptive Swarm-Based Distributed Routing[C]//Proc of the 2002 Int'l Joint Conf on Neural Networks, 2002: 12- 17.
  • 6Eberhart R C,Shi Y H. Particle Swarm Optimization: Devel- opment Applications and Resources[C]//Proc of Congress on Evolutionary Computation, 2001 : 81-86.
  • 7Goldherg D E, Richardson J. Genetic Algorithm with Sharing for Multimodal Function Optimization[C]//Proc of the 2nd Int'l Conf on Genetic Algorithms,1987:42.
  • 8段晓东,高红霞,刘向东,张学东.一种基于种群熵的自适应粒子群算法[J].计算机工程,2007,33(18):222-223. 被引量:19
  • 9ZHAO S Z, LIANG J J, SUGANTHAN P N, et al. Dynamic multi- swarm particle swarm optimizer with local search for large scale glob- al optimization [ C]// Proceedings of 2008 IEEE Congress on Evolu- tionary Computation. Piscataway: IEEE, 2008:3845-3852.
  • 10QTEISH A, HAMDAN M. Hybrid particle swarm and conjugate gra- dient optimization algorithm [C]/! ICSI'10: Proceedings of the First International Conference on Advances in Swarm Intelligence, LNCS 6145. Berlin: Springer-Verlag, 2010:582 -588.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部