期刊文献+

基于并行MLFMA最细层数据建立算法的Petri网建模方法

Petri nets protocol modeling method based on finest level data building for parallel MLFMA
下载PDF
导出
摘要 为解决并行多层快速多极子算法(MLFMA)的功能和性能评测的问题,分析了MLFMA算法的关键问题分布树最细层数据的建立,提出了一种可以同时进行性能分析和正确性验证的形式化方法Petri网。将Petri网理论应用到具体的项目中,针对基于消息传递机制的最细层数据建立的并行算法进行形式化建模。在体现Petri网对基于消息传递机制的并行程序进行建模的优越性的同时,为后续进一步的程序正确性验证和性能分析打下基础。 To deal with the quantitative and qualitative evaluation for the parallel multi-level fast multi-pole algorithm(MLFMA),the finest level data building of a distributed tree is analyzed,which is the foundation of the MLFMA.A formal method Petri net is presented,which provides both performance analysis and verification of the parallel programs.The theory of the Petri net is applied into the concrete project,the parallel program of the finest level data building for parallel MLFMA based on MPI is modeled with this theory.The advantage of the theory for modeling the parallel algorithm based on MPI is shown meanwhile,and the foundation for the verification of the parallel algorithm and the performance analysis.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第7期1588-1590,1638,共4页 Computer Engineering and Design
基金 总装预研基金项目
关键词 多层快速多极子算法 并行 分布树 PETRI网 消息传递 MLFMA parallel distributed tree Petri net MPI
  • 相关文献

参考文献9

  • 1Guo Hailin,Xue Xiaoyan,Tong Weiqin,et al.An implementation of parallel MLFMA on a cluster of computers with distributed memory[C].Zhangjiajie,Hunan,China:The 9th International Conference for Young Computer Scientists,2008:18-21.
  • 2Sanjay Velamparambil,Weng Cho Chew,Jiming Song.10 million unknowns:is it that big?[J].IEEE Antennas and Propagation Magazine,2003,45(2):45-46.
  • 3Bhanu Hariharan,Srinivas Aluru,Balasubramaniam Shanker.A scalable parallel fast multipole method for analysis of scattering from perfect electrically conducting surfaces[C].Proceedings of the ACM/IEEE Conference on Supercomputing High Performance Networking and Computing.Baltimore,Maryland,USA:IEEE Computer Society Press,2002:1-17.
  • 4Peterson J L.Petri net theory and modeling of systems[M].Eng-lewood cliffs,NJ:Prentice Hall,1981.
  • 5Zuberek W M.Timed petri nets:definitions,properties and applications[J].Microelectronics and Reliability (S0026-2714),1991,31(4):627-644.
  • 6郭海林,胡悦,童维勤,支小莉.并行多层快速多极子算法最细层数据的建立[J].上海大学学报(自然科学版),2009,15(4):421-425. 被引量:1
  • 7郭海林,童维勤,汤华宁,倪维立.并行MLFMA分布层的构造及其负载均衡[J].计算机应用与软件,2010,27(1):252-254. 被引量:1
  • 8韩明华,彭宇行,李思昆,陈福接.基于Linux集群电磁散射并行计算实现[J].计算机研究与发展,2005,42(6):1085-1088. 被引量:7
  • 9Ananth Grama,Anshul Grupta,GeorgeKarypis,等.并行算法导论[M].张武,毛国勇,程海英,等译.2版.北京:机械工业出版社,2005.

二级参考文献24

  • 1韩明华,彭宇行,李思昆,陈福接.基于Linux集群电磁散射并行计算实现[J].计算机研究与发展,2005,42(6):1085-1088. 被引量:7
  • 2SONG J M, LU C C, CHEW W C. MLFMA for electromagnetic scattering from large complex objects[J].IEEE Transactions on Antennas and Propagation, 1997, 45(10) :1488-1493.
  • 3VELAMPARAMBIL S, CHEW W C, SONG J M. 10 million unknowns: is tt that big? [J]. IEEE Antennas and Propagation Magazine, 2003, 45 (2) :45-46.
  • 4HARIHARAN B, ALURU S, SHANKER B. A scalable parallel fast multipole method for analysis of scattering from perfect electrically conducting surfaces [ C ] // Conference on High Performance Networking and Computing Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, Baltimore, Maryland, USA. [ S. 1. ] : IEEE Computer Society Press, 2002: 1-17.
  • 5WARREN M S, SALMON J K. A parallel hashed oct-tree N-body algorithm [C]// Proceedings of the 1993 ACM/ IEEE Conference on Supercomputing, Portland, Oregon, USA. [ S. l. ] : ACM, 1993 : 15-17.
  • 6GRAMA A,GRUPTA A,KARYPIS G,et al.并行算法导论[M].张武,毛国勇,程海英,等译.2版.北京:机械工业出版社,2005.
  • 7SHI H, SCHAEFFER J. Parallel sorting by regular sampling [ J ]. Journal of Parallel and Distributed Computing, 1992, 14(4):361-372.
  • 8VELAMPARAMBIL S, CHEW W C. Analysis and performance of a distributed memory multilevel fast multipole algorithm [ J ]. IEEE Transactions on Antennas and Propagation, 2005, 53 ( 8 ) : 2719-2727.
  • 9Song J M, Lu C C, Chew W C. MLFMA for electromagnetic scattering from large complex objects [ J ]. IEEE Transactions on Antennas and Propagation, 1997,45(10) : 1488 - 1493.
  • 10Velamparambil S, Chew W C, Song J. 10 million unknowns: Is it that big? [J]. IEEE Ant. Propag. Mag. , 2003,45(2) :43 -58.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部