期刊文献+

Bilinear Bcklund transformation and explicit solutions for a nonlinear evolution equation 被引量:1

Bilinear Bcklund transformation and explicit solutions for a nonlinear evolution equation
下载PDF
导出
摘要 The bilinear form of two nonlinear evolution equations are derived by using Hirota derivative. The Backlund transformation based on the Hirota bilinear method for these two equations are presented, respectively. As an application, the explicit solutions including soliton and stationary rational solutions for these two equations are obtained. The bilinear form of two nonlinear evolution equations are derived by using Hirota derivative. The Backlund transformation based on the Hirota bilinear method for these two equations are presented, respectively. As an application, the explicit solutions including soliton and stationary rational solutions for these two equations are obtained.
作者 吴勇旗
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期37-41,共5页 中国物理B(英文版)
基金 Project supported by the Science Research Foundation of Zhanjiang Normal University (Grant No. L0803)
关键词 Hirota method Backlund transformation soliton solution Hirota method, Backlund transformation, soliton solution
  • 相关文献

参考文献39

  • 1Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia, PA: SIAM).
  • 2Novikov S, Manakov S V, Pitaevskii L P and Zakharov V E 1984 Theory of Solitons, The Inverse Scattering Methods (New York: Consultants Bureau).
  • 3Newell A C 1985 Solitons in Mathematics and Physics (Philadelphia, PA: SIAM).
  • 4Belokolos E D, Bobenko A I, Enolskii V Z, Its A R and Matveev V B 1994 Algebro-Geometric Approach to Nonlinear Integrable Equations (Berlin: Springer).
  • 5Cherednik I 1996 Basic Methods of Soliton Theory (Singapore: World Scientific).
  • 6Matsuno Y 1984 Bilinear Transformation Method (London: Academic Press, Inc.).
  • 7Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press).
  • 8Konopelchenko B, Sidorenko J and Strampp W 1991 Phys. Lett. A 157 17.
  • 9Chen Y and LiY S 1991 Phys. Lett. A 157 22.
  • 10Cao C W, Wu Y T and Geng X G 1999 J. Math. Phys. 40 3948.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部