期刊文献+

The energy levels of a two-electron two-dimensional parabolic quantum dot 被引量:1

The energy levels of a two-electron two-dimensional parabolic quantum dot
下载PDF
导出
摘要 This paper studies the two-electron total energy and the energy of the electron-electron interaction by using a variational method of Pekar type on the condition of electric-LO-phonon strong coupling in a parabolic quantum dot. It considers the following three cases: 1) two electrons are in the ground state; 2) one electron is in the ground state, the other is in the first-excited state; 3) two electrons are in the first-excited state. The relations of the two-electron total energy and the energy of the electron-electron interaction on the Coulomb binding parameter, the electron-LO-phonon coupling constant and the confinement length of the quantum dot are derived in the three cases. This paper studies the two-electron total energy and the energy of the electron-electron interaction by using a variational method of Pekar type on the condition of electric-LO-phonon strong coupling in a parabolic quantum dot. It considers the following three cases: 1) two electrons are in the ground state; 2) one electron is in the ground state, the other is in the first-excited state; 3) two electrons are in the first-excited state. The relations of the two-electron total energy and the energy of the electron-electron interaction on the Coulomb binding parameter, the electron-LO-phonon coupling constant and the confinement length of the quantum dot are derived in the three cases.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期335-338,共4页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 10747002) Inner Mongolia Universities Science Research Project (Grant No. NJzc08158)
关键词 quantum dot electron-electron interaction the variational method of Pekar type quantum dot, electron-electron interaction, the variational method of Pekar type
  • 相关文献

参考文献23

  • 1Kastner M A 1993 Phys. Today 46 24.
  • 2Ashoori R C 1996 Natrue (London) 379 413.
  • 3Reed M A, Randall J N, Aggarwal R J, Matyi R J, Moore T M and Wetsel A E 1988 Phys. Rev. Lett. 60 535.
  • 4Kouwenhoven L P, Hekking F W J, van Wees B J, Harman C J P M, Timmering C E and Foxon C T 1990 Phys. Rev. Lett. 65 361.
  • 5Hansen W, Smith T P, Lee K L, Brum J A, Knoedler C M, Hong J M and Kern D P 1989 Phys. Rev. Lett. 62 2168.
  • 6Ashoori R C, Stormer H L, Weiner J S, Pfeiffer L N, Baldwin K W and West K W 1993 Phys. Rev. Left. 71 613.
  • 7Sikorski C and Merkt U 1989 Phys. Rev. Lett. 62 2164.
  • 8Merkt U, Huser J and Wagner M 1991 Phys. Rev. B 43 7320.
  • 9Bruce N A and Maksym P A 2000 Phys. Rev. B 61 4718.
  • 10Kumar A, Laux S E and Stern F 1990 Phys. Rev. B 42 5166.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部