摘要
Using the Keldysh nonequilibrium Green function and equation-of-motion technique, this paper studies the mag- netotransport through an Aharonov-Bohm (AB) ring with parallel double quantum dots coupled to ferromagnetic leads. It calculates the transmission probability in both the equilibrium and the nonequilibrium case, analyses the conduc- tance and the tunnel magnetoresistance for various parameters, and obtains some new results. These results show that this system is provided with an excellent spin filtering property, and that a large tunnelling magnetoresistance and a negative tunnelling magnetoresistance can arise by adjusting relative parameters; these facts indicate that this system is a possible candidate for spin valve transistors, and has important applications in spintronics.
Using the Keldysh nonequilibrium Green function and equation-of-motion technique, this paper studies the mag- netotransport through an Aharonov-Bohm (AB) ring with parallel double quantum dots coupled to ferromagnetic leads. It calculates the transmission probability in both the equilibrium and the nonequilibrium case, analyses the conduc- tance and the tunnel magnetoresistance for various parameters, and obtains some new results. These results show that this system is provided with an excellent spin filtering property, and that a large tunnelling magnetoresistance and a negative tunnelling magnetoresistance can arise by adjusting relative parameters; these facts indicate that this system is a possible candidate for spin valve transistors, and has important applications in spintronics.
基金
Project supported by the Scientific Research Fund of the Education Department of Sichuan Province of China (Grant No. 2006A069)
Funds for Major Basic Research Project of Sichuan Province of China (Grant No. 2006J13-155)