期刊文献+

自组装海藻酸钠纳米粒在正常小鼠体内分布的研究 被引量:2

Study on the distribution of self-assembled sodium alginate nanoparticles in mice
原文传递
导出
摘要 目的:研究自组装海藻酸纳米粒(sSAN)在小鼠的体内分布情况,探讨sSAN作为维生素D3药物载体的可行性。方法:用异硫氰基荧光素(FITC)标记sSAN和负载维生素D3的海藻酸纳米粒(sSAN-VD3),将两种标记好的纳米粒分别给予小鼠灌胃,在不同的时间将小鼠处死,分别取血清和肝、肺、肾、脾,各脏器经匀浆后,用荧光分光光度计测定其荧光强度,计算血清和各组织中sSAN和sSAN-VD3的含量。结果:经灌胃给药后在小鼠血清、肝、肾、肺中均检测到上述药物,而脾中没有检测到。给药后0.5h和1h,sSAN-VD3-FITC及sSAN-FITC在肝、肺和血清中的含量持续增加,以1h时达峰值浓度,给药2h、4h后,两种制剂的浓度逐渐降低。在肾脏中的含量随着时间的延长逐渐增加,于2h时达峰值浓度,随后逐渐降低。结论:sSAN及sSAN-VD3经小鼠灌胃给药后均可吸收入血,而且口服吸收后在肝、肺、肾和血清中均有一定的分布。 Objective:To study on the distribution of self-assembled sodium alginate nanoparticles in mice,to discuss the possibility of sSAN being drug carrier of Vitamin D3. Method:sSAN and sSAN-VD3 were labeled with FITC. The rats were intragastric administered by sSAN-FITC and sSAN-VD3-FITC and were executed at different times, and serum, liver, kidney, spleen, lung were made into tissue homogenates, determined fluorescence intensity of serum and tissue homogenates. Results:sSAN and sSAN-VD3 could be detected in serum, live, kidney and lung at different times, but not in spleen. sSAN-VD3-FITC and sSAN-FITC increased continuously in liver lung and serum after administered and reached max concentration at 1h. sSAN-VD3-FITC and sSAN-FITC increased gradually in kidney, and reached max concentration at 2h, then decrease gradually. Conclusions:Both of sSAN and sSAN-VD3 could be absorbed into the blood after intragastric administration, and could distribute in the liver, lung, kidney and serum.
出处 《现代生物医学进展》 CAS 2010年第3期418-420,共3页 Progress in Modern Biomedicine
基金 国家863计划基金支持项目(2007AA10Z349)
关键词 海藻酸钠纳米粒 荧光标记 体内分布 FITC 维生素D3 Sodium alginate nanoparticles fluorescent marker biodistribution FITC vitamin D3
  • 相关文献

参考文献9

  • 1Sanguansri P, Augustin M. Nanoscale materials development a food industry[J]. Perspective Trends in Food Science & Technology, 2006, 17(3):547-556.
  • 2Paul, Numerof, Howard L, etal. The use of radioactive phosphorus in the assay of vitamin D[J]. The Journal of Nutrition, 1998, 20:13-21.
  • 3Liu C-G, Desai K-G, Chen X-G, etal. Linolenic Acid-Modified Chitosan for Formation of Self-Assembled Nanoparticles [J]. Journal Agriculture Food Chemistry, 2005, 53(11):437-441.
  • 4连佳芳,张三奇.固体脂质纳米粒研究进展[J].第四军医大学学报,2005,26(17):1621-1623. 被引量:7
  • 5Eguchi M, Shibata K. A comparative study of the calcification -promoting action of 1, 25- (OH)2D3 and calcitonin on the growth cartilage of rats with l-hydroxyethylidene-1, 1-biphosphonic acid (HEBP)-induced rickets [J]. International Orthopaedics (SICOT), 1987, 11(6):77-82.
  • 6Damge C, Vranckx H, Balschmidt P, etal. Poly nanospheres for oral administration of insulin[J]. Pharm Sci, 1997, 86(12):1403-1409.
  • 7Sanguansri P, Augustin MA. Nanoscale materials development a food industry[J]. Perspective Trends in Food Science & Technology, 2006, 17(10): 547-556.
  • 8Chen F, Zhang ZR,Yuan F, et al.In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery [J]. International Journal of Pharmaceutics, 2008, 349 (2):226-233.
  • 9Maestrelli F, Zerroukb N, Cirri M, etal. Microspheres for colonic delivery of ketoprofen-hydroxypropyl-[3 -cyclodextrin complex [J]. European Journal of Pharmaceutical Sciences, 2008, 34(1):1-11.

二级参考文献19

  • 1Penkler L,Muller RH,Runge SA,et al. Pharmaceutical cyclosporin formulation with improved biopharmaceutical properties, improved physical quality and greater stability, and method for producing said formulation[R]. WHO,1999:56733.
  • 2Bargoni A,Cavalli R,Caputo O,et al. Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats[J]. Pharm Res, 1998;15(5):745.
  • 3Mima CS,Mehnert W,Schafer-Korting M. Solid lipid nanoparticles as drug carries for topical glucocorticoids[J]. Int J Pharm,2000;196(2):165-167.
  • 4Cavalli R,Gasco MR,Chetoni P,et al. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin [J]. Int J Pharm,2002;238(1-2):241-245.
  • 5Westesen K,Bunjes H,Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential[J]. J Control Release,1997;48(2-3):223-236.
  • 6Muhlen A,Schwarz C,Mehnert W. Solid lipid nanoparticles(SLN)for controlled drug delivery-drug release and release mechanism[J]. Eur J Pharm Biopharm, 1998,45(2):149-155.
  • 7Muller RH,Mader K,Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art[J]. Eur J Pharm Biopharm,2000;50(1):161-177.
  • 8Trotta M,Pattarino F,Ignoni T. Stability of drug-carrier emulsions containing phosphatidyl choline mixtures[J]. Eur J Pharm Biopharm,2002;53(4):203.
  • 9Wang JA, Sum X, Zhang ZR. Eninanccd brain largcring by synincsis of 3',5'-dioctanovl-5-fluoro-2'-deoxvuridine and incorporation into solid lipid nano-particles[J]. Eur J Pharm Biopharm,2002;54(3):285-290.
  • 10Hodoshima N,Udagawa C,Ando H,et al. Lipid nanoparticles for antitumor drugs [J]. Int J Pharm,1997;146(1):81-92.

共引文献6

同被引文献31

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部