期刊文献+

酵母表面展示酶技术 被引量:4

Technologies for Yeast Surface Display of Enzymes
原文传递
导出
摘要 酵母表面工程是利用载体蛋白将外源蛋白以活性形式锚定于酵母细胞外表面,免去了外源蛋白的纯化和固定,并且对其有稳定作用。本文综述了酵母表面展示技术的原理、步骤、优点以及目前常见的酵母表面展示酶,如淀粉水解酶、纤维素水解酶、与木糖利用相关的酶、脂肪酶、有机磷水解酶的构建及应用。 Yeast surface engineering is established by anchoring the heterogeneous proteins in its active form to the surface of yeast cell using carrier proteins,which eliminates the process for immobilization and purification of protein and improves the stability of the displayed proteins.This paper reviewed the principle,procedure,and advantages of yeast surface display technique as well as the construction and application of yeast armed by biocatalysts,such as amylolytic enzymes,cellulolytic enzymes,key enzymes in xylose utilization,lipase,organ phosphorus hydrolase.
出处 《现代生物医学进展》 CAS 2010年第3期593-596,共4页 Progress in Modern Biomedicine
基金 广西自然科学基金(桂科自0991078) 广西科学院基本科研业务费资助项目(08YJ16WL02)
关键词 酵母表面工程 表面展示 固定化酶 全细胞催化剂 Yeast surface engineering Surface display Immobilized enzymes Whole cell catalysts
  • 相关文献

参考文献22

  • 1Roessl U, Nahalka JNidetzky B. Carrier-free immobilized enzymes for biocatalysis[J]. Biotechnol Lett, 2009, Epub ahead of print.
  • 2Petrenko V. Evolution of phage display: from bioactive peptides to bioselective nanomaterials [J]. Expert Opin Drug Deliv, 2008, 5 (8): 825-836.
  • 3Saleem M, Brim H, Hussain S, et al. Perspectives on microbial cell surface display in bioremediation [J]. Biotechnol Adv, 2008, 26(2): 151-161.
  • 4Kato M, Fuchimoto J, Tanino T, et al. Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties [J]. Appl Microbiol Biotechnol, 2007, 75(3): 549-555.
  • 5Wang Z, Mathias A, Stavrou S, et al. A new yeast display vector permitting free scFv amino termini can augment ligand binding affinities[J]. Protein Eng Des Sel, 2005, 18(7): 337-343.
  • 6Murai T, Ueda M, Yamamura M, et al. Construction of a starch-utilizing yeast by cell surface engineering [J]. Appl Environ Microbiol, 1997, 63(4): 1362-1366.
  • 7Shigechi H, Koh J, Fujita Y, et al. Direct production of ethanol from raw corn starch via fern~entation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase [J]. Appl Environ Microbiol, 2004, 70(8): 5037-5040.
  • 8Yamada R, Bito Y, Adachi T, et al. Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated alpha-amylase and glucoamylase genes [J]. Enzyme and Microbial Technology, 2009, 44(5): 344-349.
  • 9Shibasaki S, Maeda HUeda M. Molecular display technology using yeast--arming technology[J]. Anal Sci, 2009, 25(1): 41-49.
  • 10Fujita Y, Takahashi S, Ueda M, et al. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes [J]. Appl Environ Microbiol, 2002, 68 (10): 5136-5141.

二级参考文献12

  • 1沈煜,郑华军,王颖,鲍晓明,曲音波,白凤武.木酮糖激酶表达水平对酿酒酵母木糖代谢产物流向的影响[J].生物化学与生物物理进展,2004,31(8):746-751. 被引量:11
  • 2[1]Ying W,Wenlong S,Xiangyong L,et al.Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisia[J].Biotech Lett,2004,26:885-890.
  • 3[3]Hamacher T,Becker J.Characterization of the xylose-transporhng properties of yeast hexose transporters and their influence on xylose utilization[J].Microbiol,2002,148:2 783-2 788.
  • 4[4]Miroslav S,Ho NW.Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast[J].Yeast,2004,21(8):671-684.
  • 5[5]Mitsuyoshi U,Atsuo T.Genetic immobilization of proteins on the yeast cell surface[J].Biotechnology Advances,2000,18:121-140.
  • 6[6]Walfridsson M,Bao X,Anderlund M,et al.Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene which expresses an active xylose (glucose) isomerase[J].Appl Environ Microbiol,1996,62(12):4 648-4 651.
  • 7[7]Marko K,Maurice T,Jasper D,et al.Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain[J].FEMS Yeast Res,2005,5:925-934.
  • 8沈煜,侯进,鲍晓明,等.木糖异构酶在酿酒酵母表面的展示[J].工业微生物,2005,36(1):1-3.
  • 9[10]Toshiyuki M,Mitsuyoshi U,Atsuo T,et al.Construction of a starch-utilizing yeast by cell surface engineering[J].Appl Enviro Microbiol,1997,63(4):1 362-1 366.
  • 10[11]Gietz RD,Schiestl RH,Willems AR,et al.Studies on the transformation of intact yeast cells by the LiAc/SSDNA/PEG procedure[J].Yeast,1995,11:355-360.

共引文献6

同被引文献54

  • 1贾艳萍,魏群,赵军.对酵母细胞酶法破壁的研究[J].中国酿造,2005,24(9):11-13. 被引量:34
  • 2肖朝庭,傅衍,田勇.酿酒酵母细胞表面工程应用研究新进展[J].微生物学报,2005,45(5):812-816. 被引量:5
  • 3张卉,袁其朋.Hepcidin的基因克隆及其在毕赤酵母中的分泌表达[J].生物工程学报,2007,23(3):381-385. 被引量:8
  • 4刘文山,闫云君.脂肪酶表面展示技术[J].中国生物工程杂志,2007,27(9):97-102. 被引量:4
  • 5Saleem M,Brim H,Hussain S,et al.Perspectives onmicrobial cell surface display in bioremediation[J].Biotechnol Adv,2008,26(2):151-161.
  • 6Pepper L、R,Cho Y、K,Boder E、T,et al.A decadeof yeast surface display technology:where are wenow?[J].Comb Chem High Throughput Screen,2008,11(2):127-134.
  • 7Shimma Y,Jigami Y.Expression of human glycosyl-transferase genes in yeast as a tool for enzymatic syn-thesis of sugar chain[J].Glycoconj J,2004,21:75-78.
  • 8Takayama K,Suye S,Kuroda K,et al.Surface dis-play of organophosphorus hydrolase on Saccharomy-ces cerevisiae[J].Biotechnol Prog,2006,22(4):939-943.
  • 9Boder E T,Wittrup K D.Yeast surface display forscreening combinatorial polypeptide libraries[J].NatBiotechnol,1997,15(6):553-557.
  • 10Qingjie W,Lei L,Min C,et al.Construction of anovel Pichia pastoris cell-surface display systembased on the cell wall protein Pirl[J].Current Micro-biology,2008,56:352-357.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部