期刊文献+

具有偏差变元的Lienard型方程反周期解的存在唯一性 被引量:1

Existence and Uniqueness of Anti-Periodic Solutions for a Class of Lienard-type Equation with a Deviating Argument
下载PDF
导出
摘要 利用Leray-Schauder度理论,获得具有偏差变元的Lienard方程x″(t)+f1(t,x(t))x′(t)+f2(x(t))x′((t))2+g(t,x(t-τ(t)))=p(t)反周期解存在唯一性的充分条件. By employing Leray-Schauder degree theorem,some new sufficient conditions of the existence and uniqueness of Anti-periodic solutions for Lienard-type equation with a deviating argument of the form x″(t)+f1(t,x(t))x′(t)+f2(t,x(t))x′((t))2+g(t,x(t-τ(t)))=p(t) are obtained.
作者 罗芳琼
出处 《广西科学》 CAS 2010年第1期27-31,共5页 Guangxi Sciences
关键词 LIENARD方程 偏差变元 反周期解 LERAY-SCHAUDER度 Lienard-type equation deviating arguments anti-periodic solutions Leray-Schauder degree
  • 相关文献

参考文献11

  • 1Villari G.Periodic solutions of Lienard equation[J].J Math Anal Appl,1982,86:376-386.
  • 2Villari G.On the existence of periodic solutions of the Lienard equation[J].Nonlinear Anal,1983,7:71-78.
  • 3Mawhin J L,Ward J R.Periodic solutions of some forced Lienard differential equation at resonance[J].Arch Math,1983,41:337-351.
  • 4彭世国.时滞Liénard型方程的周期解[J].工程数学学报,2004,21(3):463-466. 被引量:11
  • 5李永昆.具偏差变元的Liénard型方程的周期解[J].Journal of Mathematical Research and Exposition,1998,18(4):565-570. 被引量:35
  • 6Aizicivici S,McKibben M,Reish S.Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities[J].Nonlinear Anal,2001,43:233-251.
  • 7Liu Bingwen.Anti-periodic solutions for forced Rayleigh-type equations[J].Nonlinear Analysis:Real Word Applications,2009,10:2850-2856.
  • 8Chen Y,Nieto J J,ORegan D.Anti-periodic solutions for fully nonlinear first-order differential equations[J].Mathematical and Computer Modelling,2007,46:1183-1190.
  • 9陈太勇,刘文斌,张建军,章美月.Liénard方程反周期解的存在性[J].数学研究,2007,40(2):187-195. 被引量:6
  • 10Deimling K.Nonlinear functional analysis[M].New York:Springer-Verlag,1985.

二级参考文献8

共引文献41

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部