期刊文献+

偶匹配可扩性的极图问题(英文) 被引量:1

Extremal Graphs about Bipartite Matching Extendability
下载PDF
导出
摘要 设G是含有完美匹配的简单图.称图G是偶匹配可扩的(BM-可扩的),如果G的每一个导出子图是偶图的匹配M都可以扩充为一个完美匹配.极图问题是图论的核心问题之一.本文将刻画极大偶匹配不可扩图,偶图图类和完全多部图图类中的极大偶匹配可扩图. Let G be a simple graph containing a perfect matching. G is said to be bipartite matching extendable (BM-extendable) if every matching M whose induced subgraph is a bipartite graph extends to a perfect matching. Extremal graph problems are at the core of graph theory. In this paper, we characterize maximally BM-unextendable graphs, maximally BM-extendable graphs in the class of complete k-partite graphs with k≥2.
出处 《运筹学学报》 CSCD 2010年第1期23-30,共8页 Operations Research Transactions
基金 国家青年科学基金项目(10901144) 河南省基础与前沿技术研究计划项目(102300410044)
关键词 运筹学 图论 匹配 偶匹配 偶匹配可扩图 Operations research, graph theory, matching, bipartite matching, bipartite matching extendable
  • 相关文献

参考文献15

  • 1Anunchuen N., Caccetta L. On critically k-extendable graphs[J]. Australasian Journal of Combinatorics, 1992, 6: 39-65.
  • 2Anunchuen N., Caccetta L. On minimally k-extendable graphs[J]. Australasian Journal of Combinatorics, 1994, 9: 153-168.
  • 3Bondy J.A., Murty U.S.R. Graph Theory with Applications[M]. London, Macmillan Press Ltd, 1976.
  • 4Favaron O. On k-factor-critical graphs[J]. Discussion Mathematics, 1996, 16: 41-51.
  • 5Favaron O. Extendability and factor-criticality[J]. Discrete Mathematics, 2000, 213: 115-122.
  • 6Favaron O., Shi M.Y. Minimally k-factor-critical graphs[J]. Australasian Journal of Combinatorics, 1998, 17: 89-97.
  • 7Lou D.J. On thestructure of minimally n-extendable bipartite graphs[J]. Discrete Mathematics, 1999, 202: 173-181.
  • 8Lou D.J., Yu Q.L. Connectivity of k-extendable graphs with large k[J]. Discrete Applied Math ematics, 2004, 136: 55-61.
  • 9Lovasz L., Plummer M.D. Matching Theory[M]. North Holland, Elsevier Science Publishers, 1986.
  • 10Plummer M.D. On n-extendable graphs[J]. Discrete Mathematics, 1980, 31: 201-210.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部