期刊文献+

均值-方差-近似偏度投资组合模型和实证分析 被引量:13

Mean-Variance-Approximate Skewness Portfolio Model and Empirical Analysis
下载PDF
导出
摘要 均值-方差投资组合模型作为现代投资组合理论的基础,采用方差作为风险度量,但忽略了投资组合收益的非对称性.而考虑收益非对称性的基于偏度的投资组合模型由于非凸和非二次性使模型难以求解.本文提出用上下半方差的比值近似刻画偏度,建立了均值-方差-近似偏度(MVAS)模型,并利用该模型对中国证券市场主要股票指数进行实证分析.实证分析结果表明,在收益率非正态分布的市场中,考虑了收益率非对称性的投资组合模型较传统的MV和MAD模型具有更优的表现. The classical Markowitz's mean-variance model in modern investment science uses variance as risk measure while it ignores the asymmetry of the return distri- bution. When skewness is adopted to measure the asymmetry, the portfolio optimization model becomes very difficult due to the nonconvex and non-quadratic features of skew- hess. In this paper, we propose a mean-variance-approximate skewness (MVAS) model which measures the asymmetry by the radio of positive semi-variance and negative semi- variance. Empirical analysis of Chinese stock market shows that the portfolio models which consider the asymmetry of the return distribution outperform MV and MAD mod- els when the market has non-normal feature.
作者 余婧
出处 《运筹学学报》 CSCD 2010年第1期106-114,共9页 Operations Research Transactions
基金 国家自然科学基金资助项目(项目号:70832002)
关键词 运筹学 金融优化 收益率非对称性 近似偏度 实证分析 Operations research, financial optimization, asymmetry distribution, approximate skewness, empirical analysis
  • 相关文献

参考文献15

  • 1W. Briec and K. Kerstens. Markowitz portfolio selection in multidimensional moment space. Technical report, University of Perpignan, 2005.
  • 2S.D. Campbell. A review of backtesting and backtesting procedures. Journal of Risk, 9:1, 2006.
  • 3P. Chunhachinda, K. Dandapani, S. Hamid, and A.J. Prakash. Portfolio selection and skewness: Evidence from international stock markets. Journal of Banking and Finance, 21:143-167, 1997.
  • 4G.M. de Athayde and R.G. Flores. Finding a maximum skewness portfolio -- a general solution to three-moments portfolio choice. Journal of Economic Dynamics and Control, 28:1335-1352, 2004.
  • 5G.M. de Athayde and R.G. Flores Jr. On certain geometric aspects of portfolio optimisation with higher moments. In Multi-Moment Capital Asset Pricing Models and Related Topics Workshop, 2002.
  • 6H. Konno, H. Shirakawa, and H. Yamazaki. A mean-absolute deviation-skewness portfolio optimization model. Annals of Operations Research, 45:205-220, 1993.
  • 7H. Konno, T. Suzukia, and D. Kobayashi. A branch and bound algorithm for solving meanrisk-skewness portfolio models. Optimization Methods and Software, 10:297-317, 1998.
  • 8H. Konno and R. Yamamoto. A mean-variance-skewness model: algorithm and applications. International Journal of Theoretical and Applied Finance, 8:409-423, 2005.
  • 9H. Konno and H. Yamazaki. Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management Science, 37:519-531, 1991.
  • 10H. Markowitz. Portfolio selection. Journal of Finance, 7:77-91, 1952.

同被引文献128

引证文献13

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部