期刊文献+

跳跃扩散过程的期权定价模型 被引量:8

Pricing Options on Jump-diffusion Model
原文传递
导出
摘要 假定股票价格的跳过程为计数过程,建立了股票价格服从跳扩散过程的行为模型.运用随机分析中的鞅方法,推导出了股票价格的跳过程为计数过程的欧式期权定价公式,推广了已有的结果. Assumed that jump process is count process,it is established that the behavior model which the stock pricing process is obedient to jump-diffusion process.The formula of European option which stock price with jump process is count process is deduced by martingale method,and it is extended that the existing conclusions.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第6期40-45,共6页 Mathematics in Practice and Theory
基金 陕西省科技计划资助项目(2009RRM99)
关键词 跳扩散过程 计数过程 期权定价 jump-diffusion process count process option pricing
  • 相关文献

参考文献3

二级参考文献12

  • 1约翰郝尔 张陶伟译.期权、期货和衍生证券[M].北京:华夏出版社,1997.178~179.
  • 2刘嘉j.应用随机过程[M].科学出版社,2000..
  • 3Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81:637-654.
  • 4Merton R C. Option pricing when underlying stock Return are discontinuous [J ]. Journal of Financial Economics,1976, (3) : 125- 144.
  • 5Scott L Q. Pricing stock options in a jump-diffusion model with stochastic volatility and interest rate. Application of Fourier inversion methods [ J ] Mathematical Finance,1997, (4) :413-426.
  • 6Lamberton D, gapayre B. Introduce to stochastic calculus applied to finance [M]. London: Chapman and Hall,1966. 122- 123.
  • 7Joseph Stampflic, Victor Goodman. The mathematics of finance: Modeling and hedging[M]. 北京:机械工业出版社, 2004. 97-98.
  • 8(奥)奥托·纽拉特著,杨富斌.社会科学基础[M]华夏出版社,2000.
  • 9(美)艾克纳(Eichner,A.S.)主编,苏通等.经济学为什么还不是一门科学[M]北京大学出版社,1990.
  • 10洪谦.西方现代资产阶级哲学论著选辑[M]商务印书馆,1982.

共引文献36

同被引文献42

  • 1朱霞,葛翔宇,李志生.资产价值服从跳-扩散过程的风险债券定价[J].应用数学,2009,22(3):664-669. 被引量:2
  • 2邓小华,何传江,方知.随机利率下服从分数O-U过程的欧式幂期权定价[J].经济数学,2009,26(1):64-71. 被引量:6
  • 3YI FaHuai,YANG Zhou.A variational inequality arising from European option pricing with transaction costs[J].Science China Mathematics,2008,51(5):935-954. 被引量:4
  • 4Black F,Schotes M. The pricing of options and corporate liabilities[ J ]. Journal of Political Economy ,1973(81 ) :637-654.
  • 5Merton R C. Ol~ion pricing when underlying stock Return are discontinuous [ J ]. Journal of Economics, 1976 (3) : 125-144.
  • 6Harold J, Kushner. jump-Diffusions with Controlled Jumps : Existence and Numerical Methods [ J ]. Journal of Mathe- matical Analysis and Applications,2000(249) :179-198.
  • 7Yumiharu Nakano. Minimization of shortfall risk in a jump-diusion model [ J ]. Statistics & Probability Letters, 2004(67) :87-95.
  • 8Bremaud P. Point Processes and Queues:Martingale Dynamics[ M ]. New York :Springer, 1981.
  • 9Yang Yunfeng, Jin Hao. Pricing of European Exchange Options [ J ]. World Congress on Engineering and Technology, 2011,10(2) :171-174.
  • 10R C MERTON. Optimum consumption and portfolio rules in a continuous time model[J]. Journal of Economics Theory, 1971, 3:373--413.

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部