摘要
在弧连通锥-凸假设下讨论Hausdorff局部凸空间中的一类数学规划的最优性条件问题.首先,利用择一定理得到了锥约束标量优化问题的一个必要最优性条件.其次,利用凸集分离定理证明了无约束向量优化问题关于弱极小元的标量化定理和一个一致的充分必要条件.所得结果深化和丰富了最优化理论及其应用的内容.
This note deals with a kind of mathematical programming problems where all functions involved are arcwise connected cone-convex in HausdorfF locally convex spaces.First,by using the alternative theorem,a theorem of optimality necessary condition for a scalar optimization problem with cone-constrained is established.Then,The scalarization theorem and the unified necessary and sufficient optimality conditions are proposed for weakly minimum in a vector optimization problem through the separation theorem.The results deepen and enrich the content of optimization theory and application.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第6期128-133,共6页
Mathematics in Practice and Theory
基金
国家青年自然科学基金(10901004)
北京市教委人文社科项目(SM2009100038005)
北京市属高等学校人才强教深化计划项目(RHR201007117)
国家民委自然科学基金(09BF06)
宁夏自然科学基金(NZ0959)
关键词
数学规划
最优性条件
弧连通锥-凸函数
弱极小元
标量化
mathematical programming
optimality conditions
arcwise connected coneconvex function
weakly minimum
scalarization