期刊文献+

弧连通锥-凸数学规划的最优性条件

Optimality Conditions for Mathematical Programming Involving Arcwise Connected Cone-Convex Functions
原文传递
导出
摘要 在弧连通锥-凸假设下讨论Hausdorff局部凸空间中的一类数学规划的最优性条件问题.首先,利用择一定理得到了锥约束标量优化问题的一个必要最优性条件.其次,利用凸集分离定理证明了无约束向量优化问题关于弱极小元的标量化定理和一个一致的充分必要条件.所得结果深化和丰富了最优化理论及其应用的内容. This note deals with a kind of mathematical programming problems where all functions involved are arcwise connected cone-convex in HausdorfF locally convex spaces.First,by using the alternative theorem,a theorem of optimality necessary condition for a scalar optimization problem with cone-constrained is established.Then,The scalarization theorem and the unified necessary and sufficient optimality conditions are proposed for weakly minimum in a vector optimization problem through the separation theorem.The results deepen and enrich the content of optimization theory and application.
作者 陈炜 余国林
出处 《数学的实践与认识》 CSCD 北大核心 2010年第6期128-133,共6页 Mathematics in Practice and Theory
基金 国家青年自然科学基金(10901004) 北京市教委人文社科项目(SM2009100038005) 北京市属高等学校人才强教深化计划项目(RHR201007117) 国家民委自然科学基金(09BF06) 宁夏自然科学基金(NZ0959)
关键词 数学规划 最优性条件 弧连通锥-凸函数 弱极小元 标量化 mathematical programming optimality conditions arcwise connected coneconvex function weakly minimum scalarization
  • 相关文献

参考文献8

  • 1Hu Yuda, Ling Chen. The generalized optimality conditions of multiobjective programming problem in topological vector space[J]. Journal of Mathematical Analysis and Applications, 2004, 290(1): 363-372.
  • 2余国林,刘三阳.拓扑向量空间中多目标优化问题的广义鞍点条件[J].西安电子科技大学学报,2006,33(3):491-494. 被引量:2
  • 3徐义红,刘三阳.非光滑准不变凸规划的最优性条件与对偶定理[J].西安电子科技大学学报,2002,29(5):698-701. 被引量:2
  • 4Avriel M, Zang I. Zang, Generalized arcwise connected functions and characterization of local-global mimimum properties[J]. Journal of Optimization Theory and Applications, 1980, 32(1): 407-425.
  • 5Singh G. Elementary properties of arcwise connected sets and functions[J]. Journal of Optimization Theory and Applications, 1983, 41(1): 377-387.
  • 6Mukherjee R N, Yadav S R. A note on arcwise connected sets and functions[J]. Bulletin of the Australian Mathematical Society, 1985, 31(2): 369-375.
  • 7Bhatia D, Mehra A. Optimality conditions and duality involving arcwise connected and generalized arcwise connected functions[J]. Journal of Optimization Theory and Applications, 1999, 100(1): 181-194.
  • 8Fu J Y, Wang Y H. Arcwise connected cone-convex functions and mathematical programming[J]. Journal of Optimization Theory and Applications, 2003, 118(1): 339-352.

二级参考文献5

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部