期刊文献+

结合滤子技术的牛顿折线法及其实现

A Filter Newton Dogleg Method and Its Implementation
原文传递
导出
摘要 成功将多维滤子技术应用到牛顿折线法,提出了多维滤子牛顿折线法.新算法增加了牛顿点以及信赖域的试探点被接收作为下一步迭代点的几率.在一定的假设条件下证明了算法的全局收敛性.数值试验表明,滤子牛顿折线法适合于求解等势线呈峡谷状的函数. This paper gives an implementation of the multidimensional filter technique,we employ this technique into the Newton Dogleg method,which makes the Newton point and the trial point of the trust region subproblem to be taken more often.Global convergence is promoted through the use of the filter.Numerical results demonstrate the filter Newton Dogleg method suitable for solving the function of curved valleys.
作者 孙莉 贺国平
出处 《数学的实践与认识》 CSCD 北大核心 2010年第6期134-139,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(10571109 10901094) 山东省自然科学基金(Y2008A01) 山东省科技攻关项目(2006GG3210009)
关键词 多维滤子 牛顿折线法 信赖域方法 全局收敛性 multidimensional filter Newton Dogleg method trust region methods global convergence
  • 相关文献

参考文献7

  • 1Fletcher R, Leyffer S. Nonlinear programming without a penalty function[J]. Math Prog, 2002, 91: 239-269.
  • 2Gould N I M, Leyffer S, Toint Ph L. A multidimensional filter algorithm for nonlinear equations and nonlinear least-squares[J]. SIAM J Opt, 2005, 15: 17-38.
  • 3Gould N IM, Sainvitu C, Toint Ph L. A filter-trust-region method for unconstrained optimization[J]. SIAM J Opt, 2005, 16: 341-357.
  • 4Sainvitu C, Toint Ph L. A filter-trust-region method for simple-bound constrained optimization[J]. Opt Meth Soft, 2007, 22: 835-848.
  • 5Xiao Y, Zhou F. Nonmonotone turst region method with curvilinear path in unconstrained optimization[J]. Computing, 1992, 48: 303-317.
  • 6缪卫华,孙文瑜.一个解无约束优化问题的过滤信赖域方法[J].高等学校计算数学学报,2007,29(1):88-96. 被引量:22
  • 7王永丽,贺国平,王鑫.求解正定二次规划的一个全局收敛的滤子内点算法[J].数学的实践与认识,2008,38(21):127-133. 被引量:6

二级参考文献25

  • 1Vapnik V. Statisical Learning Theory[M]. New York : Wiley, 1998.
  • 2Mangasarian O L. Lagrangian Support Vector Machine [R]. Technical Report 00-06, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, June,2000.
  • 3Mangasarian O L, David R. Active support vector machines ctassification[J~. Advances in Neural Information Processing Systems (NIPS 2000),2000.
  • 4Lee Y J, Mangasarian O L. SSVM: A smooth support vector machines for classification[J]. Computational Optimazation and Applieations, 2000,20(1 ) : 5-22.
  • 5Mangaaarian O L, David R. Successive over relaxation for support vector machines[J]. IEEE Trans On Neural Networks, 1999,10(5):1032-1037.
  • 6Benson H Y, Shanno D F, Vanderbei R J. Interior-point Methods for Nonconvex Nonlinear Programming[M]. Technical report, Department of Electrical Engineering, University of Malaya, Kuala Lumpur, Malaysia, August, 2002.
  • 7Fletcher R, Leyffer S. Nonlinear programming without a penalty function[J]. Mathematical Programming,2002, 91:239-270.
  • 8Ulbrich M, Ulbrich S, Vicente L N. A globally convergent primal-dual interior-point filter method for nonlinear programming[J]. Mathematical Programming, 2003,100 : 379-410.
  • 9Conn A R, Gould N I M, Toint Ph L. Trust region methods. SIAM, Philadelphia, USA, 2000
  • 10Deng N Y, Xiao Y, Zhu D. A nonmonotone trust region algorithm. J. Optimiz. Theory Appl., 1993, 76:259-285

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部