期刊文献+

风险敏感性控制在CEV模型的应用研究

A Application Study of Cev Model on Risk Sensitive Control
原文传递
导出
摘要 假设股票的价格遵循CEV过程,经济因子满足两个相互独立的布朗运动,运用风险敏感性随机最优控制理论得到新的结论,最后对于简化的模型,得到最优长期增长率的解析解. Suppose the stock price follows the constant elasticity of variance (CEV) process, we assume that economic factor satisfy two mutually independent Brown motion,apply risk sensitive stochastic optimal control theory to gaining new results. Finally we obtain explicit solution of optimal long-term growth rate for simplified model.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第7期9-13,共5页 Mathematics in Practice and Theory
关键词 随机最优控制 风险敏感 常方差弹性 stochastic optimal control risk sensitive CEV
  • 相关文献

参考文献8

  • 1Cox J. The constant elasticity of variance option pricing model[J]. The Journal of Portfolio Management, 1996, 22: 16-17.
  • 2Cox J and Ross S. The valuation of options for alternative stochastic processes[J]. Journal of Financial Economics, 1976, 31: 45-66.
  • 3Beckers S. The constant elasticity of variance model and its implications for option pricing[J]. The Journal of Finance, 1980, 35(3): 61-73.
  • 4Emanuel D, J Macbeth. Further results on the constant elasticity of variance call option pricing model[J]. Journal of Financial and Quantitative Analysis, 1982, 17(4): 53-54.
  • 5Davydov D, Linetsky V. The valuation and hedging of barrier and lookback option under the cev process[J]. Management Science, 2001, 47: 949-965.
  • 6Bielecki T R, Pliska S R. Risk sensitive dynamic asset management[J]. Appl Math Optimization, 1999(39): 337-360.
  • 7Fouque J P. Papanicolaou G, Sircar R. Derivative in Financial Markets with Stochastic Volatility[M]. Cambridge: Cambridge Univ Press, 2000: 77-83.
  • 8Zariphopoulou T. A Solution approach to valuation with unhedgable risks[J]. Finance stochastic, 2001(5): 61-82.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部