期刊文献+

演化多目标优化中的几何热力学选择 被引量:8

Geometric Thermodynamical Selection for Evolutionary Multi-Objective Optimization
下载PDF
导出
摘要 热力学遗传算法(Thermodynamical Genetic Algorithms,TDGAs)借鉴热力学中的自由能极小过程来统一处理多目标优化在逼近性和多样性两方面的任务.为提高TDGA的运行效率和解集分布均匀性,提出了一种几何热力学选择.在该选择中首先定义角度熵通过扇形采样来度量种群逼近方向的多样性.然后利用距离精英定义距离能量来度量种群的逼近程度,避免了耗时的非劣分层操作.此外,引入分量热力学替换规则以较低计算代价驱动种群的几何自由能快速下降.在多目标0/1背包问题上的实验结果表明,几何热力学选择极大地提高了TDGA的运行效率和解集分布均匀性;采用该选择的TDGA算法可生成与NSGA-II在逼近性和分布多样性上性能相当的解,但在运行效率上明显优于NSGA-II. Thermodynamical genetic algorithms (TDGAs) simulate the minimization of free energy in thermodynamics to deal simultaneously with both convergence and diversity in multi-objective optimization.A geometric thermodynamical selection (GTS) is proposed to improve the running efficiency and the distribution uniformity of solutions of TDGA.In GTS,an angle entropy is introduced to measure the diversity of convergent directions by sector sampling and then a distance energy is presented to measure the extent of convergence by distance elitist rather than the expensive non-dominated sorting.In addition,a component thermodynamical replacement rule is used to force the geometric free energy of population to steeply descend with low computational costs.Experimental results on multi-objective 0/1 knapsack problems show that GTS remarkably improves the running efficiency and the distribution uniformity of solutions of TDGA.At the same time,TDGA with GTS produces a perfect convergence and spread of solutions as well as NSGA-II,while its running efficiency is much higher than that of NSGA-II.
出处 《计算机学报》 EI CSCD 北大核心 2010年第4期755-767,共13页 Chinese Journal of Computers
基金 国家自然科学基金(60773009) 国家“八六三”高技术研究发展计划项目基金(2007AA01Z290) 国家留学基金(2007101731)资助~~
关键词 多目标优化 演化算法 热力学替换 角度熵 距离能量 multi-objective optimization evolutionary algorithms thermodynamical replacement angle entropy distance energy
  • 相关文献

参考文献20

  • 1周育人,闵华清,许孝元,李元香.多目标演化算法的收敛性研究[J].计算机学报,2004,27(10):1415-1421. 被引量:14
  • 2Coello Coello C A, Lamont G B, Van Veldhuizen D A. Evolutionary Algorithms for Solving Multi-Objective Problems. Second Edition. Berlin: Springer Verlag, 2007.
  • 3Van Veldhuizen D A, Lamont G B. Multiobjective evolutionary algorithms: Analyzing the state-of the-art. Evolutionary Computation, 2000, 8(2): 125-147.
  • 4Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 5Fonseca C M, Fleming P J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-- Part Ⅰ: A unified formulation. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 1998, 28(1): 26-37.
  • 6Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3): 221-248.
  • 7Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
  • 8Kita H, Yabumoto Y, Mori N, Nishikawa Y. Multi-objective optimization by means of the thermodynamical genetic algorithm//Proceedings of the International Conference on Parallel Problem Solving from Nature. Berlin, Germany, 1996 504-512.
  • 9Mori N, Yoshida J, Tamaki H, Kita H, Nishikawa Y. A thermodynamical selection rule for the genetic algorithm// Proceedings of the IEEE Conference on Evolutionary Computation. Perth, Australia, 1995:188-192.
  • 10康立山.非数值并行算法(第1册):模拟退火算法.北京:科学出版社,1997.

二级参考文献23

  • 1Goldberg D. E.. Genetic Algorithms for Search, Optimization,and Machine Learning. MA: Addison-Wesley, 1989
  • 2Srinivas N. , Deb K.. Multi-objective function optimization use non-dominated genetic algorithms. Evolutionary Computation,1994, 2(3): 221~248
  • 3Zitzler E. , Thiele L.. Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach.IEEE Transactions on Evolutionary Computation, 1999, 3 (4):257~271
  • 4Knowles J. D. ,Corne D. W.. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation, 2000, 8(2), 149~172
  • 5Deb K. , Agrawal S. , Pratap A. , Meyarivan T.. A fast and elitist multi-objective genetic algorithms: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6 (2) : 182~197
  • 6Rudolph G.. On a multi-objective evolutionary algorithm and its convergence to the Pareto set. In: Proceedings of the 15th IEEE Conference Evolutionary Computation, Anchorage AK,1998, 511~516
  • 7Rudolph G., Agapie A.. Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC2000), Piscataway, NJ, 2000, 1010~1016
  • 8Hanne Thomas. On the convergence of multiobjective evolutionary algorithms. European Journal of Operational Research,1999, 117(3): 553~564
  • 9Laumanns M. , Thiele L. , Deb K. , Zitzler E.. Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation, 2002, 10(3): 263~282
  • 10Zitzler E. , Thiele L. , Laumanns M. , Fonseca C. M.. V Grunert da Fonseca. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 117~132

共引文献21

同被引文献52

引证文献8

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部