期刊文献+

海泡石原位晶化合成NaY分子筛的研究 被引量:4

Synthesis of NaY Zeolite on Sepiolite by in-situ Crystallization
原文传递
导出
摘要 首次用海泡石为硅源、高岭土为铝源,在水热条件下原位晶化合成NaY分子筛,采用粉末X射线衍射仪、电子扫描电镜等测试手段对所合成样品进行表征分析,着重考察晶化温度和投料配比对产品相对结晶度的影响.研究结果表明,NaY分子筛的形成受晶化温度的影响最大,随温度的升高,产品的相对结晶度显著提高,晶化温度升至100℃时,得到结晶度较高的NaY分子筛晶体.在原位晶化体系中,随n(SiO2)/n(Al2O3)减小,其相对结晶度增大;增加体系的n(Na2O)/n(SiO2)和减小n(H2O)/n(Na2O)都增大产品的相对结晶度;n(SiO2)/n(Al2O3)在投料比影响因素中占主导地位. A new approach for the synthesis of microporous molecular sieves was realized. The microporous NaY zeolite has been hydrothermally synthesized by in-situ crystallization using sepiolite as silica source and kaolin as aluminum source,and characterized by XRD and SEM. The effects of molar ratios of precursors and crystallization temperature were investigated. The crystallization temperature is the most important factor for the synthesis of zeolite NaY. The relative crystallinity of the samples markedly increased with crystallization temperature going up. When the reaction temperature increased up to 100 ℃,excellent zeolite crystals were obtained. The results showed that the relative crystallinity of NaY zeolite increased with the molar ratio of SiO2/Al2O3 declining. The increasing of molar ratio of Na2O/SiO2 and the decling of molar ratio of H2O/Na2O in the reaction system were favorable to the formation of NaY zeolite. It was found that the molar ratio of SiO2/Al2O3 played a dominant role in the molar ratios of precursors.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2010年第4期329-333,共5页 Acta Chimica Sinica
基金 国家自然科学基金(No.20871045) 湖南省教育厅重点课题(No.08A027)资助项目
关键词 海泡石 NAY 原位晶化 合成 sepiolite NaY in-situ crystallization synthesis
  • 相关文献

参考文献10

  • 1Speronello, B. K. US 4965233, 1990 [Chem. Abstr. 1990, 114, 9478].
  • 2Liu, H. T.; Bao, X. J.; Wei, W. S.; Shi, Ct Microporous Mesoporous Mater. 2003, 66, 117.
  • 3Liu, H. H.; Zhao, H. J.; Gao, X. H.; Ma, J. T. Catal. Today 2007, 125, 163.
  • 4Brown, S. M.; Durante, V. A.; Reagan, W. J.; Speronello, B. K. US 4493902, 1985 [Chem. Abstr. 1985, 101, 194975].
  • 5Dight, L. B.; Bogert, D. C.; Leskowicz, M. A. US 5023220, 1991 [Chem. Abstr. 1991, 113, 118239].
  • 6Madon, R. J.; Koermer, G. S.; Macaoay, J. M. US 5395809, 1995 [Chem. Abstr. 1995, 122, 295117].
  • 7Zheng, S. Q.; Sun, S. H.; Wang, Z. F.; Gao, X. Z.; Xu, X. L. Clay Miner. 2005, 40, 303.
  • 8王雪静,张甲敏,杨胜凯,杨风霞.偏高岭土水热合成NaY分子筛的机理研究[J].无机化学学报,2008,24(2):235-240. 被引量:20
  • 9Gualtieri, A.; Norby, P.; Artioli, G.; Hanson, J. Phys. Chem. Miner. 1997, 24, 191.
  • 10Hu, H. C.; Lee, T. Y. Ind. Eng. Chem. Res. 1990, 29, 749.

二级参考文献12

  • 1Taggart L L, Ribaud G L. Process for Producting Molecular Sieve Bodies. U. S. Patent 3119659, 1964.
  • 2Brown S M, Durante V A, Reagan W J. Fluid Catalytic Cracking Catalyst Comprising Microspheres. U. S. Patent 4493902,1955.
  • 3Elena I, Bonetto R, Juan C T. Ind. Eng. Chem. Res., 1993, 32 : 751-752
  • 4XU Ming-Can(许名灿). Thesis for the Doctorate of Dalian Institute of Chemical Physics, Chinese Academy of Science(中国科学院大连物理化学研究所博士论文).2000.
  • 5ZHENG Shu-Qin(郑淑琴), WANG Zhi-Feng(王智峰), TAN Zeng-Guo(谭争国), et al. Petrochemical Technology and A pplication(Shihua Jishu Yu Y ingyong), 2006,24(2):104-106
  • 6ZHENG Shu-Qin(郑淑琴), YANG Jian-Guo(羊建国), GAO Xong-HOU (高雄厚), et al. China Non-Metallic Mining Industry Herald(Zhongguo Fei Jinshu Kuang Gongye Daokan), 2003,(2):26-29
  • 7Takhtamysheva A V, Konovalchikov L D, Nefedov B K. Chemistry and Technology of Fuels and Oils, 1991,26(8): 397-399
  • 8Francis L H, Matawan N J. Method for Producing Cracking Catalyst. U. S. Patent 4581341, 1986.
  • 9LIU Hong-Tao, BAO Xiao-Jun, WEI Wei-Sheng, et al. Microporous and Me soporous Material, 2003,66:117-125
  • 10ZOU Shun-Xiang(周顺翔), GAO Da-Wei(高大维), LU Hui-Juan(吕慧娟), et al. Journal of Jilin University(Jilin Daxue Xuebao), 1981,111(2):1-15

共引文献19

同被引文献44

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部