期刊文献+

基于融合MPEG-7描述子和二次预测机制的视频自动分类算法 被引量:1

An Automatic Video Classification Scheme Based on Combination of MPEG-7 Descriptors and Second-Prediction Strategy
下载PDF
导出
摘要 针对互联网上日益增长的视频数量,提出了一种大量融合MPEG-7描述子并启用二次预测机制的视频自动分类方法.研究了颜色、纹理、形状、运动等9种MPEG-7描述子,从5类视频中提取并融合这些描述子作为视频的整体特征,输入支持向量机(SVM)中进行模型训练和预测.在传统支持向量机的1-1方法中,通过启用二次预测机制来提高分类的准确率.实验结果表明,该方法与其他方法相比有较高的准确率,适合大规模、复杂环境下的视频自动分类任务. To deal with the growing amount of videos on the Internet,this paper presented a scheme for automatic video classification based on the combination of MPEG-7 descriptors and second-prediction strategy.Nine MPEG-7 descriptors such as color,texture,shape and motion were extracted from five different genres of videos and combined as a whole representative feature.Then it was put into an SVM classifier to train the model and predict.The traditional 1-1 method was modified with a second-prediction strategy to improve the classification accuracy.The experiments on a broad range of video data demonstrate that the accuracy of our classification scheme is higher than other existing schemes and the scheme is suitable for the large-scale video classification task under a complex environment.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第3期398-402,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60702042,60802057) 国家高技术研究发展计划(863)项目(2009AA01Z407) 上海市青年科技启明星计划(A类)(10QA1403700)
关键词 视频分类 MPEG-7描述子 二次预测 支持向量机 video classification MPEG-7 descriptors second-prediction support vector machine
  • 相关文献

参考文献13

  • 1Zhu Y Y, Ming Z. SVM-based video scene classification and segmentation [C]// International Conference on Multimedia and Ubiquitous Engineering. Busan: IEEE Computer Society, 2008.
  • 2Xu L Q, Li Y M. Video classification using spatialtemporal features and PCA [C]// Proceedings of the 2003 International Conference on Multimedia and Expo (ICME'03). Washington DC: IEEE Computer Society, 2003.
  • 3Mittal A, Cheong L F. Addressing the problems of bayesian network classification of video using high-dimensional features [J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(2): 230-244.
  • 4Gillespie W J, Nguyen D T. Video classification using a tree-based RBF network [C]//IEEE International Conference on Image Processing. Geona:IEEE Computer Society, 2005.
  • 5Geetha M K, Palanivel S. HMM based automatic video classification using static and dynamic features [C]// International Conference on Computational Intelligence and Multimedia Applications. Sivakasi: IEEE Computer Society, 2007.
  • 6金鸣,邱锡鹏,吴立德.改进的AdaBoost分类器在视频中的体育场景检测[J].计算机工程,2006,32(12):229-231. 被引量:11
  • 7王鹏,蔡锐,杨士强.“文本为主”的多模态特征融合的新闻视频分类算法[J].清华大学学报(自然科学版),2005,45(4):475-478. 被引量:11
  • 8Spyrou E, Borgne H L, Mailis T, et al. Fusing MPEC-7 visual descriptors for image classification [C]// International Conference on Artificial Neural Networks. Warsaw: European Neural Network Society, 2005.
  • 9Zhou W S, Asha V, Kuo C C J. Video analysis and classification for MPEG-7 applications [C]// IEEE International Conference on Consumer Electronics. Los Angeles: Consumer Electronics Society, 2000.
  • 10Chang S F, Sikora T, Puri A. Overview of the MPEG-7 standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(6) : 688- 695.

二级参考文献18

  • 1Chang C C, Lin C J. LibSVM: A library for support vector machines [EB/OL]. http: //www. csie. ntu. edu. tw /~cjlin/libsvm, 2001.
  • 2Zhu W, Toklu C, Liou S P. Automatic news video segmentations and categorization based on closed-captioned text [A]. Proceedings of IEEE International Conference on Multimedia and Expo [C].Tokyo, Japan: IEEE, 2001.1036 - 1039.
  • 3Liu Z, Huang J, Wang Y. Classification of TV programs based on audio information using hidden Markov model [A].Proceedings of 1998 IEEE 2nd Workshop on Multimedia Signal Processing [C]. Redondo Beach, California, USA:IEEE, 1998. 27-32.
  • 4Qi W, Gu L, Jiang H, et al. Integrating visual, audio and text analysis for news video [A]. Proceedings of IEEE International Conference on Image Processing [C].Vancouver, BC, Canada: IEEE, 2000, 3: 520-523.
  • 5Lin W H, Hauptmann A. News video classification using SVM-based multimodal classifiers and combination strategies[A]. Proceedings of 10th ACM International Conference on Multimedia [C]. Juan-les-Pins, France: ACM, 2002. 323 -326.
  • 6Joachims T. Text categorization with support vector machines: Learning with many relevant features [A].Proceedings of 10th European Conference on Machine Learning [C]. Dorint-Parkhotel, Chemnitz, Germany,1998.
  • 7Lu L, Jiang H, Zhang H J. A robust audio classification and segmentation method [A]. Proceedings of 9th ACM International Conference on Multimedia [C]. Ottawa,Canada: ACM, 2001. 203 - 211.
  • 8Xu G, Ma Y F, Zhang H J, et al. Motion based event recognition using HMM [-A3. Proceedings of 16th International Conference on Pattern Recognition [C].Quebec, Canada: IEEE, 2002, 2:831-834.
  • 9Platt J. Probabilistic Outputs for Support Vector and Comparisons to Regularized Likelihood Machines Met hods,Advances in Large Margin Classifiers [M]. USA: MIT Press, 2000.
  • 10Liu Z,Huang J,Wang Y.Classification of TV Programs Based on Audio Information Using Hidden Markov Model[C].proc.of IEEE Workshop on Multimedia Signal Processing,1998.

共引文献20

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部