期刊文献+

一类多旅行商路径均衡规划算法

A Kind of Multi-objective Traveling Salesman Problem Mission Planning Algorithm with Balanced Paths
下载PDF
导出
摘要 本文研究了多个旅行商旅行多个城市的路径规划问题,提出了基于系统科学中的"吸引子"意义下的路径规划算法.路径规划的目标是均衡各旅行商的旅行路径长度并使得路径总和得到优化.为此提出了一种求解该问题的启发式算法思想,并结合邻近点和最短路径设计了算法,同时由复杂度分析知该算法的计算时间复杂度比以往的要低. The paper presents a mission planning algorithm for Multi-objective traveling salesman problem with an objective to balance the length of traveling path and make the sum of path optimization. The travel mission involves several cities that need to be passed by traveling salesman. This algorithm is based upon the "attractors" of systems science. In this paper, combining with the neighboring points and the shortest path algorithm, we design a heuristic algorithm for solving the problem which balancing the length of traveling path and making the sum of path optimization. At the same time, the computation time complexity of the algorithm is lower than the past.
出处 《邵阳学院学报(自然科学版)》 2010年第1期32-35,共4页 Journal of Shaoyang University:Natural Science Edition
关键词 均衡规划 吸引子 邻近点 PARETO解 balanced mission planning attractor neighboring points feasible Pareto-solution
  • 相关文献

参考文献12

  • 1杜端浦.运筹图论[M].北京:北京航空航天大学出版社,1994.
  • 2Tsai Huai-Kuang, Yang Jinn-Moon, Tsai Yuan-Fang, Kao Cheng-Yan. An evolutionar algorithm for large traveling salesman problems[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B,2004,34(4):1718-1729.
  • 3Jin Hui-Dong, Leung Kwong-Sak, Wong Man-Leung,Xu ZB. An efficient self-organizing map designed algorithm for the traveling salesman problem[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B,2003,33(6):877-888.
  • 4杨超然,杨国兴.运筹与决策[M].成都:成都科技大学出版社.1992,719-726.
  • 5卢厚清,王辉东,黄杰,李波.任务均分的多旅行商问题[J].系统工程,2005,23(2):19-21. 被引量:27
  • 6Lagoudakis M G, Berhault M, Koenig S, et al. Simple auctions with performance guarantees for multi-robot task allocation. In Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan, 2004,698-705.
  • 7Somhom S, Modares A,Enkawa T. Competition-based neural network for the multiple traveling salesmen problem with minmar objective. Computes&Operation Research, 1999, 26:395 - 407.
  • 8莫愿斌,刘贺同,王勤.旅行商问题的综述教学研究[J].中国科教创新导刊,2008(8):93-94. 被引量:2
  • 9黄斌,陈德礼.多目标优化问题的有效Pareto最优集[J].计算机与数字工程,2009,37(2):28-30. 被引量:5
  • 10Cormen T H, Leiserson C E, Rivest R L. Introduction to Algorithms[M].MIT Press, 1997.

二级参考文献25

  • 1马清亮,胡昌华,杨青.一种用于多目标优化的混合遗传算法[J].系统仿真学报,2004,16(5):1038-1040. 被引量:25
  • 2莫愿斌,陈德钊,胡上序.粒子群复形法求解旅行商问题[J].浙江大学学报(工学版),2007,41(3):369-373. 被引量:10
  • 3江贺,张宪超,陈国良.有向黑白旅行商问题[J].计算机学报,2007,30(3):431-439. 被引量:4
  • 4Carlos Fonseea, Peter J. Fleming Multi-Objective Optimization and Multiple Constraint Handling with Evolutionary Algorithms-Part 1: A Unified Formulation [J]. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, 1998, 28 (1):26237
  • 5Lagoudakis M G, Markakis E, Hempe D, et al. Auctionbased multi-robot routing. In: Proceedings of the International Conference on Robotics: Science and Systems (ROBOTICS), Cambridge, Massachusetts, USA, 2005. 343-350.
  • 6Golfarelli M, Maio D, Rizzi S. Multi-agent path planning based on task-swap negotiation. In: Proceedings of the UK Planning and Scheduling SIG Workshop, Durham, UK, 1997. 69-82.
  • 7Gerkey B P, Mataric M J. Sold ! : Auction methods for multirobot coordination. IEEE Trans on Robotics and Automation, 2002,18(5) :758-768.
  • 8Lagoudakis M G, Berhault M, Koenig S, et al. Simple auctions with performance guarantees for multi-robot task allocation. In: Proceedings of 2004 IEEE/RSJ International Coference on Intelligent Robots and Systems, Sendal, Japan, 2004. 698-705.
  • 9Somhom S, Modares A, Enkawa T. Competition-based neural network for the multiple traveling salesmen problem with minmax objective. Computers & Operations Research, 1999, 26: 395 -407.
  • 10Gao P A, Cai Z X. Multi-robot task allocation for exploration. Journal of Central South University Technology, 2006, 13(5) :548-551.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部