摘要
研究如下一类具米氏(Michalis)反应速度的化学反应模型dX/dt=A-BX-XY^2,dY/dt+BX+XY^2-υY/k+Y'其中A,B,v及k为正常数,应用微分方程定性理论,在一定条件下研究了上述系统极限环的存在性,不存在性及唯一性问题.
This paper is devoted to study the following chemical reaction model with Michalis reaction speed dX/dt=A-BX-XY^2,dY/dt=BX+XY^2-υY/k+Y'where A,B,v and k are all positive constants.By using qualitative theory of ordinary differential equations,the conditions of existence, nonexistence and uniqueness of limit cycle about the above system are obtained.
出处
《生物数学学报》
CSCD
1998年第3期361-364,共4页
Journal of Biomathematics
关键词
极限环
平衡点
生化反应
Limit cycle,equilibrium point,biochemical reaction