期刊文献+

一种改进的新型非均匀方向滤波器组 被引量:1

A kind of Modified New Nonuniform Directional Filter Banks
下载PDF
导出
摘要 为了提高图象信号处理水平,可以采用一种新的多分辨率、多方向的图象变换方法。该变换采用非分离的钻石形和扇形滤波器进行方向滤波,利用统一的采样矩阵进行样本减(增)采样和方向重排,通过级联双通道树型结构得到多方向的频谱分割。该方法使每层分解后的图象具有一个低频子带和十二个高频子带,这些子带都为规则的方形矩阵,可以通过对低频子带的迭代分解实现多分辨率分析,具有临界采样和理想重构性质。 In this paper, a new multiresolution and directional transform had been proposed. The new transform is achieved by cascading the two channel tree structure, which adopted nonseparable diamond and fan filter to realize frequency partition and utilized uniform sampling matrices to rearrange and change data rate. The im- age can be deeom~ into one lowpass subband and twelve highpass subbands in each level. Besides, each ooef- fieient subbands is regular square matriee. The multiresolution representation can be achieved by simply reiterating the transform on the low-pass subband, and it has the maximally decimation and perfect reconstruction property.
作者 王佳宁
出处 《陕西教育学院学报》 2010年第1期102-106,共5页 Journal of Shaanxi Institute of Education
关键词 多分辨率 方向滤波器组 非分离滤波器 采样矩阵 麦克劳琳变换 multiresolution directional filter banks nonseparable filter resampling matrix McClellan transiorm
  • 相关文献

参考文献16

  • 1CANDES E J. Ridgelets: theory and applications[D]. Ph.D. Thesis, USA: Department of Statistics, Stanford University, 1998.
  • 2CANDES E J, DONOHO D L. Curvelets[D]. Ph. D. Thesis, USA: Department of Statistics, Stanford University, 1999.
  • 3DONOHO D L. Wedgdets: Nearly-minimax estimation of edges[J]. Annals of Statistics, 1999, 27(3): 859-897.
  • 4PENNEC E L, MALLAT S. Image compression with geometric wavelets[C]. In Proc. IEEE International Conference on Image Processing (ICIP2000), Vancouver, Canada, Sept. 2000:661 - 664.
  • 5DO M N, VETTERLI M. Contourlets. In Beyond Wavelets [M]. Stoeckler J, Welland G V, Eds. New York: Academic Press, 2003.
  • 6VELISAVLJEVIC V, BEFERULL-LOZANO B, VETTERLI M, et al. Directionlets: anisotropic multi-directional representation with separable filtering [J]. IEEE Transactions on Image processing, July, 2006, 15(7) : 1916 - 1933.
  • 7BURT P J, ADELSON E H. The Laplacian pyramid as a compact image code [J]. IEEE Trans. on Communication, 1983, 31(4) :532- 540.
  • 8BAMBERGER R H, SMITH M J T. A filter bank for the directional decomposition of images: theory and design [J]. IEEE Trans. on Signal Processing, Apr. 1992, 40(7):882-893.
  • 9LU Y, DO M N. Crisp-eontourlets: a critically sampled directional multiresolution image repreeentation[C]. Proc. of SPIE Conference on Wavelet Applications in Signal and Image Processing X, San Diego, USA, August 2003:655 -665.
  • 10NGUYEN T T, ORAINTARA S. A directional deeomposition: theory, design and implementation [ C]. In International Sympositwn on Circuits and Systems, Vancouver, Canada, May 2004, vol. 3:281 - 284.

同被引文献11

  • 1Bamberger R H, Smith M J T. A filter bank for the di- rectional decomposition of images: theory and design [J]. IEEE Transactions. on Signal Processing, 1992,40 (7) .882-893.
  • 2Nguyen T T, Oraintara S. A directional decomposi- tion: theory, design and implementation[C]//International Symposium on Circuits and Systems, Vancouver, Canada, 2004,3 : 281-284.
  • 3Nguyen T T, Oraintara S. A class of directional filter banks[C]//International Symposium on Circuits and Systems, Vancouver, Canada, 2005,5 : 1110-1113.
  • 4Nguyen T T, Oraintara S. Multiresolution direction fil- ter banks: Theory, design and application[J]. IEEE Transactions. on Signal Process, 2005, 53 (10): 3895- 3905.
  • 5Smith L I. A tutorial on principal components analysis [Z]. 2004. http://www, cs. otago, ac. nz/cosc453/ student_tutorials/principal components, pdf.
  • 6Jackson J E. A Users Guide to Principal Components Analysis[M]. Canada: John Wiley & Sons, Hoboken, New Jersey, 2003.
  • 7Wongsawat Y, Rao K R, Oraintara S. Multichannel SVD-Basecl Image De-Noising[C]//IEEE International Symposium on Circuits and Systems (ISCAS), 2005, 6056: 5990-5993.
  • 8Moeslund T B. Principal Component Analysis-An In- troduction. Technical Report CVMT 01-02, ISSN 0906-6233. Laboratory of Computer Vision and Media Technology, Aalborg University. 2001. http://ek- stern, aau. dk/.
  • 9Lu H C, Yeh K H. Optimal design of 2-D FIR digital filters by scaling-free McClellan transformation using least-squares estimation[J]. Signal processing, 1997, 58(3) : 303-308.
  • 10Donoho D L, I M Johnstone. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika, 1994, 81 (3): 425-455.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部