期刊文献+

概率OWG算子及其在多属性决策中的应用 被引量:5

Probability OWG Operator and Its Application to Multi-Attribute Decision Making
下载PDF
导出
摘要 提出了概率有序加权几何算子(P-OWG算子),研究了该算子的一些基本性质,基于该算子提出了属性权重确知、各状态概率已知的不确定多属性决策方法,最后,进行了实例分析。 In this paper, we proposed probability ordered weighted geometric (P- OWG) operator, and study some of its characteristics. Based on this operator, we develop a approach for solving uncertain multi - attribute decision - making problems, in which the attribute weights and the probability of the situation are completely known. Finally, an illustrative example is given.
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2010年第1期12-15,共4页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10461007 10761007) 江西省自然科学基金资助项目(2008GZS0076 2007GZS2051) 江西省教育厅教改课题基金资助项目(JXJG-09-1-55)
关键词 P—OWG算子 不确定多属性决策 概率 P - OWG operator uncertain multi - attribute decision - making probability
  • 相关文献

参考文献2

二级参考文献5

共引文献16

同被引文献24

  • 1徐泽水.拓展的C-OWA算子及其在不确定多属性决策中的应用[J].系统工程理论与实践,2005,25(11):7-13. 被引量:91
  • 2林永钦,傅春.基于方案群体满意度的多属性群决策方法[J].南昌大学学报(理科版),2006,30(5):444-447. 被引量:1
  • 3YAGER R R. On Ordered Weighted Averaging Aggre- gation Operators in Multicriteria Decision Making[J]. IEEE Transactions on Systems Man and Cyhemeties, 1988,18:183-190.
  • 4YAGER R R. OWA Aggregation Over a Continuous Interval Argument with Applications to Decision Mak- ing[J]. IEEE Transactions on Systems Man and Cybe- rnetics-Part B, 2004,34 :1952-1963.
  • 5YAGER R R. Applications and Extensions of OWA Aggregations[J]. International Journal of Man-Ma- chine Studies,1992,37 (1):103-122.
  • 6HERRERA F, HERRERA V E,CHICLANA F. Mili- tiaperson Decision Making Based on Multiplieative Preference Relations[J].European Journal of Opera- tional Research, 2001,129: 372-385.
  • 7吴坚.基于OWA算子理论的混合型多属性决策研究[D].合肥:合肥工业大学,2008.
  • 8徐泽水.不确定多属性决策方法及应用[M].北京:清华大学出版社.2005.
  • 9YAGER R R. On Ordered Weighted Averaging Aggre- gation Operators in Multi-criteria Decision Making [J]. IEEE Transactions on Systems Man and Cyber- netics, 1988(18) : 183-190.
  • 10JOS M M, ANNA M G. The Induced Generalized OWA Operator[J]. Information Sciences, 2009 ( 179 ) : 729-741.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部