期刊文献+

计算Pascal矩阵谱半径和相应特征向量的一个快速算法 被引量:1

A Fast Algorithm for Computing the Spectral Radius and the Correspondent Eigenvector of the Pascal Matrices
下载PDF
导出
摘要 研究Pascal矩阵谱半径及其对应特征向量的数值求解算法问题,利用幂法和Pascal矩阵的性质给出了一个有效的迭代求解算法,该算法每一步迭代只用到浮点数的加法运算。同时数值实验显示,该算法具有较高的精度和较快的收敛速度。 The problem for computing the spectral radius and its correspondent eigenvector has been considered. An efficient fast algorithm has bee presented, by using the power method and the algebraic properties of Pascal matrices. The new algorithm needs only additions without multiplication at each iteration step. The numerical experiments show that the accuracy and the convergent speed of the new algorithm are sound.
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2010年第1期16-18,23,共4页 Journal of Nanchang University(Natural Science)
基金 江西省自然科学基金资助项目(2007GQS2063) 江西省教育厅青年科学基金资助项目(GJJ09450)
关键词 PASCAL矩阵 谱半径 特征值 特征向量 Pascal matrices spectral radius eigenvalue eigenvector
  • 相关文献

参考文献2

二级参考文献14

  • 1Kailath T, Sayed A. Displacement Structure: Theory and Applications[ J]. SIAM Review, 1995 (37) :297 - 386.
  • 2Wang Xiang, Lu Linzhang, A Fast Sine Transform Algorithm for Toeplitz Matrices and Its Applications [ J ]. Nu- merical Mathematics, A Journal of Chinese Universities ( English Series), 2005 ( 14 ) : 171 - 179.
  • 3Wang Xiang, Lu Linzhang, Factorizations of Confluent Cauchy- Vandermonde Matrices[ J]. Applied Mathematics and Computation,2006,182 (2) : 1 667 - 1 672.
  • 4Commenges D, Monsion M. Fast inversion of Triangular Toeplitz Matrices [ J ]. IEEE Trans. Automat. Control AC, 1984(29) :250 -251.
  • 5Bini D. Parallel Solution of Certain Toeplitz Linear Systems[ J]. SIAM J. Comput, 1984( 13 ) :268 - 276.
  • 6Lin Fu - Rong, Ching Wai - Ki, Michael K. Ng, Fast Inversion of Triangular Toeplitz Matrices [ J ]. Theoretical Computer Science ,2004,315:511 - 523.
  • 7Martinsson P G, Rokhlin V, Tygert M. A Fast Algorithm for the Inversion of General Toeplitz Matrices [ J ]. Computers and Mathematics with Applications, 2005 ( 50 ) : 741 - 752.
  • 8Britanak V. A Unified Discrete Cosine and Discrete Sine Transform Computation [ J ]. Signal Processing, 1995 (43) :333 - 339.
  • 9Chui C, Chan A. Application of Approximation Theory Methods to Recursive Digital Filter Design [ J ]. IEEE Trans Acoust. Speech. Signal Processing, 1982 ( 30 ): 18 - 24.
  • 10Haykin S. Adaptive Filter Theory [ M ]. 3rd ed. Prentice Hall, 1996.

共引文献11

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部