期刊文献+

一维时变非磁化等离子体光子晶体禁带的密温特性 被引量:6

Temperature and Density Properties of Prohibit Band Gaps for One Dimension Time-varying Unmagnetized Plasma Photonic Crystals
下载PDF
导出
摘要 采用等温近似,用非磁化等离子体的分段线形电流密度卷积(Piecewise Linear Current Density Recursive Convolution,PLCDRC)时域有限差分(Finite-Different Time-Domain,FDTD)算法研究一维时变非磁化等离子体光子晶体禁带的密度和温度特性。以高斯脉冲为激励源,用算法公式得到的电磁波透射率来讨论等离子体温度和密度对时变非磁化等离子体光子晶体禁带的影响。结果表明,改变等离子体的温度、密度和等离子体的上升时间,可以获得不同的禁带特性。 The piecewise linear current density recursive convolution (PLCDRC) finite -different time -domain (FDTD) method for unmagnetized plasmas is applied to study on the temperature and density properties of prohibit band gaps for one dimension time - varying unmagnetized plasma photonic crystals under the isothermal hypothesis. The electromagnetic propagation process of a Gaussian pulse through a time - varying unmagnetized plasma photonic crystal is investigated. The transmission coefficients through time - varying unmagnetized plasma photonic crystals are calculated,the effects of plasma temperature and density on characteristic of prohibit band gaps for time - varying unmagnetized plasma photonic crystals is analyzed with them. The results illustrate that the different prohibit band gaps can be gotten by changing plasma temperature, density and rising time
出处 《南昌大学学报(理科版)》 CAS 北大核心 2010年第1期66-69,74,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(60808019)
关键词 非磁化等离子体光子晶体 光子晶体 时域有限差分法 unmagnetized plasma photonic crystals photonic crystals finite -difference time -domain method
  • 相关文献

参考文献10

二级参考文献32

共引文献47

同被引文献68

  • 1刘少斌,朱传喜,袁乃昌.等离子体光子晶体的FDTD分析[J].物理学报,2005,54(6):2804-2808. 被引量:39
  • 2刘少斌,顾长青,周建江,袁乃昌.磁化等离子体光子晶体的FDTD分析[J].物理学报,2006,55(3):1283-1288. 被引量:22
  • 3李岩,郑瑞生,冯玉春,刘颂豪,牛憨笨.一种发光二极管模型中无序光子晶体对光输出影响的研究(英文)[J].光子学报,2006,35(6):902-905. 被引量:17
  • 4S. Join. Localization of photons in certain disordered dielectric super lattices[J]. Phys. Rev. Lett., 1987, 58(23): 2486-2489.
  • 5E. Yablonvitch. Inhibited spontaneous emission is solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059-2060.
  • 6M. Bayindir, B. Temelkuran, E. Ozbay. Photonic crystal based beam splitters[J]. Appl. Phys. Lett., 2000, 77(24): 3902-3904.
  • 7H. Hojo, K. Akimoto, A. Mase. Enhanced wave transmi-ssion in one-dimensional plasma photonics crystals[C]. Conference digest on 28th International Conference Infrared and Millimeter Waves, Japan, 2003. 347-348.
  • 8H. Hojo, A. Mase. Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals[J]. J. Plasma Fusion Res., 2004, 80(2): 89-90.
  • 9O. Sakai, T. Sakaguchi, Y. Ito et al.. Interaction and control of millimetre-waves with micro-plasma arrays[J]. Plasma Phys. Control Fusion, 2005, 47: B617-B627.
  • 10O. Sakai, T. Sakaguchi, K. Tachibana. Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar micro-plasmas[J]. Appl. Phys. Lett., 2005, 87(24): 241505.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部