期刊文献+

一种多属性和准则定序分类模型 被引量:1

Sequencing classification model on multiple attributes and criterias
下载PDF
导出
摘要 针对经典粗糙集理论在解决定性属性、定量属性以及准则属性同时出现的定序分类问题时能力较弱的这种情况,对经典粗糙集理论进行扩展,并给出了一个基于扩展粗糙集的决策分析方法.该方法使用"不可区分-相似-优势"关系来代替经典粗糙集理论中的不可区分关系来获取知识的粗糙近似.实例验证表明该方法不但能够解决上述问题而且还能处理决策表中可能存在的不一致现象,具有较好的有效性与优越性. Classic rough set theory solves problems by means of indiscernibility relation, but it is powerless to resolve the sequencing classification problems in which qualitative attributes, quantitative attributes and criteria exist at the same time. In view of this situation, classic rough set theory is extended, and then a decision analysis method based on the extended rough set theory is proposed. This method replaces the indiscernibility relation in original rough set theory with the indiscernibility-similarity-dominance relation and achieves rough approximation of knowledge. An example study shows that the method can effecively resolve the above mentioned problems and can deal with inconsistence in decision table.
作者 朱颢东 钟勇
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2010年第3期500-504,共5页 Journal of Harbin Institute of Technology
基金 四川省科技计划资助项目(2008GZ0003) 四川省科技攻关资助项目(07GG006-019)
关键词 粗糙集理论 不可区分关系 定序分类问题 不可区分-相似-优势关系 rough set theory indiscernibility relation sequencing classification problem indiscemibility- similarity-dominance relation
  • 相关文献

参考文献18

  • 1GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets theory for multicriteria decision analysis [ J ]. European Journal of Operational Research, 2001, 129 ( 1 ) :1 -47.
  • 2GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets methodology for problems in presence of multiple attributes and criteria [ J ]. European Journal of Operational Research, 2002, 138(2): 247-259.
  • 3BELACEL N. Multicriteria assignment method: Methodology and medical applications[ J]. European Journal of Operational Research, 2000, 125( 1 ) : 175 - 183.
  • 4ZOPOUNIDIS C, DOUMPOS M. Multicriteria classification and sorting methods : A literature review[ J]. European Journal of Operational Research, 2002, 138 (2) : 229 - 246.
  • 5GRECO S, SLOWINSKI R, STEFANOWSKI J, et al. Incremental versus non-incremental rule induction for muhicriteria classification [ C ]//Transactions on Rough Sets Ⅱ. Berlin Heidelberg: Springer-Verlag, 2004: 33 - 53.
  • 6DEMBCZYNSKI K, GRECO S, SLOWINSKI R. Secondorder rough approximations in multi-criteria classification with imprecise e-valuations and assignments [ C ]// RSFDGRC 2005. Berlin Heidelberg: Springer-Verlag, 2005 : 54 - 63.
  • 7BLASZCZYNSKI J, DEMBCZYNSKI K, SLOWINSKI R. Interactive analysis of preference-ordered data using dominance-based rough set approach [ C ]//ICAISC 2006. Berlin Heidelberg: Springer-Verlag, 2006 : 489 - 498.
  • 8ZARAS K, THIBAULT J. Ranking by rough approximation of preferences for decision engineering applications [ C ]//RSKT2007. Berlin Heidelberg: Springer-Verlag, 2007 : 142 - 148.
  • 9LIMing, ZHANG Baowei, WANG Tong, et al. Approximation of class unions based dominance-matrix within dominance-based rough set approach [ C ]//ACII2005. Berlin Heidelberg: Springer-Verlag, 2005 : 795 - 802.
  • 10ZARAS K. Rough approximation of a preference relation by a multi-attribute stochastic dominance tot determinist and stochastic and fuzzy problems [ J ]. European Journal of Operational Research, 2004, 159 ( 1 ) : 196 - 206.

二级参考文献60

共引文献50

同被引文献9

  • 1Chen Y, Li K W, Liu S-F. An OWA-TOPSIS Method for Multi- ple Criteria Deeision Analysis[J]. Expert Systems with Appliea tions, 2011,38(5) :5205-5211.
  • 2Ma J, Yang Y, I.i F. Research on Multi-Level Design Method of Collaboration Innovation Based on Rough Sets Theory[J]. Journal o{ Convergence In{ormation Technology, 2012,7 (3) : 1-8.
  • 3Capotorti A, Barbanera E. Credit Scoring Analysis Using a Fuzzy Probabilistic Rough Set Model[J]. Computational Sta- tistics and Data Analysis, 2012,56(4) :981-994.
  • 4Zhang J, Li T, Ruan D. Neighborhood Rough Sets for Dynam- ic Data Mining[J]. International Journal of Intelligent Sys- tems,2012,27(4) :317-342.
  • 5Peters. G, Poon. S. Analyzing IT Business Values A Domi- nance Based Rough Sets Approach Perspective [J]. Expert Systems with Applications,2011,38(9) :11120- 11128.
  • 6Qian Y, Liang J,Pedrycz W. An Efficient Accelerator for At- tribute Reduction from Incomplete Data in Rough Set Frame- work[J]. Pattern Recognition,2011,44(8) : 1658-1670.
  • 7Liou J J H. Variable Consistency Dominance-Based Rough Set Approach to Formulate Airline Service Strategies[J]. Applied Soft Computing Journal,2011,11(5) :4011-4020.
  • 8Azadeh A, Saberi M, Moghaddam R T. An Integrated DataEnvelopment Analysis-artificial Neural Network-rough Set Algorithm {or Assessment of Personnel Efficieney[J]. Ex- pert Systems with Applications,2011,38(3) : 11:364-1373.
  • 9张明,唐振民,杨习贝.不完备信息系统中的否定决策规则和知识约简[J].控制与决策,2011,26(6):851-856. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部