期刊文献+

一种基于相对特征的文本分类算法 被引量:2

A lgorithm for text classification based on comparative feature
下载PDF
导出
摘要 针对文本分类问题,将朴素贝叶斯分类与自组织特征映射网络分类相结合,提出了基于相对特征的文本分类算法.该算法具有很快的速度和较高的准确率,从而为构建高效的搜索引擎提供支撑. Aimed at the problem of text classification,the paper makes Naive Bayes classifier combined with self-organizing map classifier,the algorithm is proposed based on comparative feature text classification.The algorithm has rapid speed and high accuracy so as to hold forth the support for constructing efficient search engine.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期63-66,共4页 Journal of Northeast Normal University(Natural Science Edition)
基金 教育部科技发展项目(20090043110010) 吉林省科技发展计划项目(20090503) 吉林省教育厅科技规划项目(吉教科合安2009第587号)
关键词 文本分类 朴素贝叶斯 自组织映射网络 相对特征 text classification Naive Bayes self-organizing map comparative feature
  • 相关文献

参考文献7

  • 1宫秀军,史忠植.基于Bayes潜在语义模型的半监督Web挖掘[J].软件学报,2002,13(8):1508-1514. 被引量:28
  • 2JAMAIN A,HAND D J.The naive bayes mystery:a classification detective story[J].Pattern Recognition Letters,2005,26:1752-1760.
  • 3樊兴华,孙茂松.一种高性能的两类中文文本分类方法[J].计算机学报,2006,29(1):124-131. 被引量:70
  • 4LEOPOLD E,KINDERMANN J.Text categoriza-tion with support vector machines how to represent texts in input space[J].Machine Learning,2002,46(1/2/3):423-444.
  • 5SEBASTIANI F.Machine learning in auto-mated text categorization[J].ACM Computing Surveys (CSUR),2002,34(1):1-47.
  • 6JASON D M,LAWRENCE S,JAIME T.Tackling the poor assumptions of naive bayes text classifiers.In proceedings of the twentieth international conference on machine learning (ICML-2003)[C].Newyork:Washington D C,2003:616-623.
  • 7何晓群.多元统计分析[M].北京:中国人民大学出版社,2001.

二级参考文献13

  • 1Lewis D. D.. An evaluation of phrasal and clustered representalions on a text categorization task. In: Proceedings of SIGIR'92,the 15st ACM International Conference on Research and Development in Information Retrieval, Copenhagen, Denmark,1992, 37-50.
  • 2Sebastiani F,. Machine learning in automated text categorization. ACM Computing Surveys, 2002, 34(1): 1-47.
  • 3Lewis D.. Naive bayes at forty: The independence assumption in information retrieval. In: Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, 1998,4-15.
  • 4Salton G.. Automatic Text Processing: The Transformation,Analysis, and Retrieval of Information by Computer. Reading,MA: Addison Wesley, 1989.
  • 5Mitchell T. M.. Machine Learning. New York: McCraw Hill,1996.
  • 6Joachims T.. Text categorization with support vector machines: Learning with many relevant features. In: Proceedings of the 10th European Conference on Machine Learning,Chemnitz, Germany, 1998, 137-142.
  • 7Yang Y. , Liu X.. A Re-examination of text categorization methods. In: Proceedings of SIGIR'99, the 22nd ACM International Conference on Research and Development in Information Retrieval, Berkeley, CA, 1999, 42-49.
  • 8樊兴华.因果推理和文本分类.清华大学博士后出站报告,2004.
  • 9Larkey L. S.. Automatic essay grading using text categorization techniques.. In: Proceedings of SIGIR'98, the 21st ACM International Conference on Research and Development in Information Retrieval, Melbourne, Australia, 1998, 90-95.
  • 10Dumais S. T. , Platt J. , Hecherman D. , Sahami M.. Inductive learning algorithms and representation for text categorization.In: Proceedings of CIKM'98, the 7th ACM International Conference on Information and Knowledge Management, Bethesda, MD, 1998, 148-155.

共引文献98

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部