期刊文献+

SVM在配方感官评估中的应用 被引量:7

Application on SVM in Formulating Sensory Evaluation
下载PDF
导出
摘要 支持向量机(SVM)是近年来在统计学习理论的基础上发展起来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。本文从SVM的理论分析切入,阐述了SVM的基本原理、特性,提出用回归函数估计SVM进行建模来解决感官评估多类划分问题,并对其实际应用进行了算法选择、参数设计和实验验证。 Supprot Vector Machine (SVM) is a new pattern recognition method developed in recent years on the goundation of statistical learning theory.It wins populatity due to many attractive features and emphatical performance in the fields of nonlinear and high dimensional pattern recognition.The thesis begins from the theory analysis of SVM,expatiates its basic principles and characteristics.And the thesis proposes a method which is using SVM regression to construct the learning model for sensory evaluation,and takes a selection,design and testing for SVM algorithm and its parameters.
作者 王涛
机构地区 青岛卷烟厂
出处 《微计算机信息》 2010年第10期236-238,共3页 Control & Automation
关键词 支持向量机 感官评估 回归估计 多类别划分 Support Vector Machine Sensory Evaluation SVM Regression Multi-class Recognition
  • 相关文献

参考文献5

二级参考文献36

  • 1袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,1999..
  • 2Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 3Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 4Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
  • 5Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 6Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861.
  • 7Tay F E H, Cao L J. ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 8Keoman V, Hadzic I. Support vectors selection by linear programming[A]. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks[J. Como, Italy, 2000, 5: 193-198.
  • 9Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machine[A]. Proc the 1997 IEEE workshop on neural networks for signal processing[C]. Amelea Island, FL, 1997, 276-285.
  • 10Laskov P. Feasible direction decomposition algorithms for training support vector machines[J]. Machine Learning, 2002, 46(1): 315-349.

共引文献2465

同被引文献84

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部