期刊文献+

Extended Symmetry of Generalized Variable-Coefficient Kadomtsev-Petviashvili Equation

Extended Symmetry of Generalized Variable-Coefficient Kadomtsev-Petviashvili Equation
下载PDF
导出
摘要 In this paper, the extended symmetry of generalized variable-coeFficient Kadomtsev-Petviashvili (vcKP) equation is investigated by the extended symmetry group method with symbolic computation. Then on the basis of the extended symmetry, we can establish relation among some different kinds of vcKP equations. Thus the exact solutions of these veKP equations can be constructed via the simple veKP equations or constant-coefficient KP equations.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第4期698-702,共5页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No. 0735030 Zhejiang Provincial Natural Science Foundations of China under Grant No. Y6090592 National Basic Research Program of China (973 Program 2007CB814800) Ningbo Natural Science Foundation under Grant No. 2008A610017 and K.C. Wong Magna Fund in Ningbo University
关键词 extended symmetry generalized variable-coefficient KP equation KP方程 广义变系数 对称性 符号计算方法 精确解
  • 相关文献

参考文献36

  • 1G.W. Bluman and S. Kumei, Symmetries and Differential Equation, Applied Mathematical Sciences, Springer, Berlin (1989).
  • 2P.J. Olver, Application of Lie Groups to Differential Equation, Graduate Texts in Mathematics, 2nd ed., Springer, New York (1993).
  • 3S.L. Zhang, S.Y. Lou, and C.Z. Qu, Chin. Phys. 15 (2006) 2765.
  • 4S.L. Zhang, S.Y. Lou, C.Z. Qu, and R.H. Yue, Commun. Theor. Phys. 44 (2005) 589.
  • 5Z.Y. Yan, Commun. Theor. Phys. 35 (2001) 647.
  • 6Z.Y. Yan,Commun. Theor. Phys. 37 (2002) 27.
  • 7Z.Y. Yan,Commun. Theor. Phys. 37(2002) 269.
  • 8X.Y. Tang and S.Y. Lou, Commun. Theor. Phys. 37 (2002) 139.
  • 9X.Y. Tang and S.Y. Lou,Chin. Phys. Lett. 19 (2002) 1.
  • 10X.Y. Tang and P.K. Shukla, J. Phys. A: Math. Theor. 40 (2007) 3729.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部