期刊文献+

高斯过程响应面法研究 被引量:6

A new response surface method baesd on gaussian process
下载PDF
导出
摘要 新型的高斯过程响应面法具有灵活性好、精度高和能量化不确定性等优点,但某些关键技术细节还存在争议。本文简要介绍了高斯过程响应面法的基本理论,结合算例详细讨论了关键技术细节的处理方法;提出了先验期望函数选用低阶多项式、相关函数选用高斯形式、粗糙度参数用边缘后验众数法固定、模型有效性必须经过验算点检验等应用建议。 Compared to the traditional response surface method (RSM), Gaussian process RSM has some remarkable advantages such as more flexibility, higher precision and quantifiable uncertainty. However, how to deal with some important technical details has been puzzling users. In this paper, the basic theory of the new method is introduced, and these technical details are discussed thoroughly and illustrated with an artificial example. Then, some suggestions such as selecting a low order polynomial as the prior expectation function, employing the Gaussian covariance function, fixing the roughness parameters at their marginal posterior mode values, and assessing the model validity using validation data, are given for engineering applications.
出处 《应用力学学报》 CAS CSCD 北大核心 2010年第1期190-195,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金-中国工程物理研究院联合基金(10876100)
关键词 响应面法 高斯过程 贝叶斯统计 不确定性分析 response surface method, gaussian process, bayesian statistics, uncertainty analysis.
  • 相关文献

参考文献7

  • 1Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments (with discussion)[J]. Statistical Science, 1989, 4(4): 409-423.
  • 2Oakley J, O'Hagan A. Bayesian inference for the uncertainty distribution of computer model outputs[J]. Biometrika, 2002, 89(4): 769-784.
  • 3Oakley J, O'Hagan A. Probabilistic sensitivity analysis of complex model: a Bayesian approach[J]. Journal of the Royal Statistical Society B, 2004, 66(3): 751-769.
  • 4Kennedy M C, O'Hagan A. Bayesian calibration of computer model[J]. Journal of the Royal Statistical Society B, 2001, 63(3): 425 -464.
  • 5Bayarri M J, Berger J O, Paulo R, et al. A framework for validation of computer models[J]. Technometrics 2007,49(2):138-154.
  • 6Paulo R. Default priors for Gaussian processes[J]. The Annals of Statistics, 2005, 33(2): 556-582.
  • 7Morris M D, Mitchell T J. Exploratory designs for computational experiments[J]. Journal of Statistical Planning and Inference, 1995, 43(3): 381-402.

同被引文献95

引证文献6

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部