期刊文献+

辛virtual局部化的一个应用 被引量:4

An application of symplectic virtual localization
原文传递
导出
摘要 作者使用辛virtual局部化公式来计算一类特殊的Calabi-Yau流形W_k的Gromov-Witten不变量.在对Gromov-Witten不变量进行局部化处理之后,作者计算出了不动点轨迹的virtual法丛的等变欧拉类和障碍丛的等变欧拉类.最后作者枚举了模空间在S^1作用下的不动点对应的所有可能的图,给出了当d<5时亏格为0的Gromov-Witten不变量. In this paper, by using the symplectic virtual localization formula it is computed that compute the Gromov-Witten invariants of certain Calabi-Yau manifolds Wk. After localizing the Gromov-Witten invariants, it is also computed that the equivariant Euler class of the virtual normal bundle of the fixed loci and the equivariant Euler class of obstruction bundle. Finally, all the possible graphs corresponding to the fixed loci of the moduli space under certain S1 action are enumerated and the genus 0 Gromov-Witten invariants are computed when d is less than 5.
作者 李晓斌
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期213-220,共8页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(10771146)
关键词 辛virtual局部化 模空间 等变欧拉类 环群作用 symplectic virtual localization, moduli space, equivariant Euler class, torus action
  • 相关文献

参考文献10

  • 1Atiyah M F,Bott R.The moment map and equivariant cohomology[J].Topology,1984,23(1):1.
  • 2Laufer H B.On CP^1 as an exceptional set[J].Recent Developments in Several Complex Variables,1981,100:261.
  • 3Kontsevich M.Enumeration of rational curves via torus action[C]∥Dijkgraff R,Faber C,G van der Geer,eds.The Moduli Space of Curves,Boston:Birkhauser,1995.
  • 4Graber T,Pandharipande R.Localization of virtual class[J].Invent Math,1999,135:487.
  • 5Chen B H,Li A M.Symplectic virtual localization of Gromov-Witten invariants[EB/OL].http:∥arxiv.org/PsCache/math/pdf/0610/0610370v1.pdf,2006.
  • 6Chen B H,Tian G.Virtual manifold and localization[J].Acta Math Sin,2010,26:1.
  • 7Faber C,Pandharipande R.Hodge integrals and Gromov-Witten theory[J].Invent Math,2000,139(1):173.
  • 8Witten E.Two dimensional gravity and intersection theory on moduli space[J].Surveys Diff Geom,1991,1:243.
  • 9Adem A,Leida J,Ruan Y B.Orbifolds and stringy topology[M].Cambridge:Cambridge University Press,2007.
  • 10Cox D A,Katz S.Mirror symmetry and algebraic geometry[M].Providence:Amer Math Soc,1999.

同被引文献35

  • 1Batyrev V. Dual polyhedra and mirror symmetry for Calabi-Yau Hypersurfaces in toric varieties [J]. J Al- gebraic Geom, 1994, 3(3) : 493.
  • 2Gualtieri M. Generalized complex geometryl- EB/OL] arXiv: math/0401221.
  • 3Chen Z, Stienon M, Xu P. Geometry of maurer-car- tan elements on complex manifolds [J]. Comm Math Phys, 2010, 297(1) 169.
  • 4Fulton W. Introduction to toric varieties [M]. Prin- ceton: Princeton University Press, 1993.
  • 5Hartshorne R. Algebraic geometry[M]. GTM52. Beijing: World Publishing Co. , 1977.
  • 6Cox D, Little J, Sehenek H. Torie varieties [M]. Providence: AMS, 2011.
  • 7Atiyah M F, Bott R. The moment map and equivari- ant eohomology[J]. Topology, 1984, 23(1): 1.
  • 8Graber T, Pandharipande R. Localization of virtual classes[J]. Invent Math, 1999,135(2) :487.
  • 9Chen W M, Ruan Y B. A new cohomology theory for orbifold[J]. Commun Math Phys, 2004, 248: 1.
  • 10Adem A, Leida J, Ruan Y B. Orbifolds and stringy topology [ M ]. Cambridge: Cambridge University Press,2007.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部