摘要
作者使用辛virtual局部化公式来计算一类特殊的Calabi-Yau流形W_k的Gromov-Witten不变量.在对Gromov-Witten不变量进行局部化处理之后,作者计算出了不动点轨迹的virtual法丛的等变欧拉类和障碍丛的等变欧拉类.最后作者枚举了模空间在S^1作用下的不动点对应的所有可能的图,给出了当d<5时亏格为0的Gromov-Witten不变量.
In this paper, by using the symplectic virtual localization formula it is computed that compute the Gromov-Witten invariants of certain Calabi-Yau manifolds Wk. After localizing the Gromov-Witten invariants, it is also computed that the equivariant Euler class of the virtual normal bundle of the fixed loci and the equivariant Euler class of obstruction bundle. Finally, all the possible graphs corresponding to the fixed loci of the moduli space under certain S1 action are enumerated and the genus 0 Gromov-Witten invariants are computed when d is less than 5.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第2期213-220,共8页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(10771146)
关键词
辛virtual局部化
模空间
等变欧拉类
环群作用
symplectic virtual localization, moduli space, equivariant Euler class, torus action