期刊文献+

基于张量Tucker分解的彩色图像压缩 被引量:6

Compression of color images based on tucker-tensor
原文传递
导出
摘要 传统图像压缩方法基于向量数据进行压缩处理,破坏了高维数据的空间本征结构.为了克服传统方法的不足,提出了将彩色图像表示成高维数据张量(A^(I_1×I_2×I_3))形式,利用张量Tucker分解,取分解后的最大子张量及其对应的特征向量,并将其进行量化编码实现图像压缩.大量实验结果表明,在相同压缩比下,本文压缩后重构图像的峰值信噪比(PSNR)与传统JPEG压缩方法相比具有较大优势,并且在视觉上本文方法重构图像的颜色信息损失量较小. Traditional image compression methods handle vectored data to compress, but the process undermines the spacial intrinsic structures of high dimensional data. In order to overcome the shortcomings of traditional methods, the authors presented a novel method of color image compression. In this paper, the color images were encoded into tensors ( AI1×I2×I3 ). The authors did the tucker decomposition of tensor to get the largest Kn sub-tensors and their eigenvectors, and then used Huffman coding to compress the color images. Experimental results show that at the same compression ratio, the Peak Signal to Noise Ratio (PSNR) of the reconstructed images of the authors' method are much better than the JPEG compression, and the authors lose less color information visually.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期287-292,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 张量 Tucker分解 彩色图像压缩 传统JPEG压缩 峰值信噪比(PSNR) 压缩比 Tensor, tucker decomposition, color image compression, JPEG compression, Peak Signal to Noise Ratio (PSNR), the ratio of the compression
  • 相关文献

参考文献9

  • 1Taskin C,Sarikoz S K.An overview of image compression approaches[C]∥The Third International Conference on Digital Telecommunications.Washington D C,USA:IEEE Computer Society,2008:174.
  • 2Bader B W,Kolda T G.Matlab tensor classes for fast algorithm prototyping[J].ACM Transactions on Mathematical Software (TOMS),2006,32(4):635.
  • 3Tucker L R.Some mathematical notes on three-mode factor analysis[J].Psychometrika,1966,31(3):279.
  • 4曹志平,曹广福.非交换C^*-代数张量积的纯态和谱[J].四川大学学报(自然科学版),2006,43(3):507-510. 被引量:1
  • 5Lathauwer L D,Moor B D,Vandewalle J.On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors[J].Society for Industrial and Applied Mathematics Philadelphia,2000,21(4):1324.
  • 6Lathauwer L D,Moor B D,Vandewalle J.A multilinear singular value decomposition[J].SIAM Journal on Matrix Analysis and Applications,2000,21(4):1253.
  • 7Rahimi M S,Sodagari S,Avanaki A N.Dimension selective tensor compression of hyperspectral images[C].[s.l.]:IEEE,2008.
  • 8Wang H C,Ahuja N.A tensor approximation approach to dimensionality reduction[J].International Journal of Computer Vision,2008,76(3):217.
  • 9Andersson C A,Bro R.The N-way toolbox for Matlab[J].Chemometrics & Intelligent Laboratory Systems,2000,52(1):1.

二级参考文献7

  • 1Buoni J J, Wadhwa B L. On joint numerical ranges[J]. Pacific J. Math, 1978, 77(2) :303.
  • 2Murphy G J. C^* -algebras and operator theory[M]. New York:Academic Press, 1988.
  • 3Haknos P R. A Hilbert space problem book[ M]. Princeton, New Jersey: Van Nostrand-Reinhold, 1967.
  • 4Guiehardel A. Tensor products of C^*-algebras[J]. Dokl. Akad. Nauk. SSSR, 1965, 160:986.
  • 5Vowden B J. C^*-norm and tensor product of C^*-algebras[J]. J. London Math. Soc, 1974, 7:595.
  • 6Vasilescu F H. Tensor products and the joint spectrum in Hilbert space[J]. Proc. Amer. Math. Soc, 1978, 72:505.
  • 7胡善文.JOINT ESSENTIAL SPECTRUM AND INDEX OF TENSOR PRODUCT OF LINEAR OPERATORS IN BANACH SPACES[J].Chinese Science Bulletin,1989,34(11):885-888. 被引量:1

同被引文献43

  • 1闫常友,杨奇逊,刘万顺.基于提升格式的实时数据压缩和重构算法[J].中国电机工程学报,2005,25(9):6-10. 被引量:54
  • 2潘晓峰,刘红星.基于神经网络的图像KL变换方法的改进[J].微处理机,2005,26(4):26-28. 被引量:5
  • 3Zamani J,Moghaddam A N,Rad H S.MRI reconstruction through Compressed Sensing using Principle Component Analysis (PCA)[C]// Proceedings of the 20th Iranian Conference on Electrical Engineering (ICEE).Tehran; IEEE,2012.
  • 4Du Q,Zhu W,Fowler J E.Anomaly Based Hyperspectral Image Compression[C]// Proceedings of IEEE International Conference on Geoscience andRemote Sensing Symposium (IGARSS).Boston,MA:IEEE,2008.
  • 5Oliveira P R,Romero R F'.A comparision between PCA neural networks and the JPEG standard for performing image compression[C]// Proceedings of Cybernetic Vision.Sao Carlos:IEEE,1996.
  • 6Lv C,Liu Z,Zhao Q.A flexible non-linear PCA encoder for still image compression[C]// Proceedings of 7th IEEE International Conference on Computer and Information Technology (CIT).Aizu-Wakamatsu,Fukushima:IEEE,2007.
  • 7Zhang Y,Mao Y.Convergence analysis of a deterministic discrete time system of Oja's PCA learning algorithm[J].IEEE Trans Nerual Netw,2005,16(3):1318.
  • 8Zhang D,Zhou Z H.Two directional two-dimensional PCA for efficient face representation and recognition[J].Elsevier,2005,69(3):224.
  • 9Mohammad M B,Mostafa M.A new technique for image compression using PCA[J].Int J Comput Sci,2012,2(1):111.
  • 10Santo R E.Principal component analysis applied to digital image compression[J].Einstein (Sāo Paulo),2012,10(2):135.

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部