期刊文献+

环形腔内双层薄液层热毛细对流的渐近解 被引量:2

ASYMPTOTIC SOLUTION OF THERMOCAPILLARY CONVECTION OF THIN TWO-LAYER SYSTEM IN AN ANNULAR CAVITY
下载PDF
导出
摘要 为了解水平温度梯度作用下环形腔内双层薄液层热毛细对流的基本特性,采用渐近线方法获得了热毛细对流的近似解.环形腔外壁被加热,内壁被冷却,上、下壁面绝热.结果表明,当环形腔宽度与内半径比趋于零时,环形腔退化为矩形腔,所得到的主流区速度场和温度场的表达式演化为Nepomnyashchy等得到的矩形腔内的结果;与数值模拟结果的比较发现,在主流区渐近解与数值解吻合较好. The convection phenomena in two-layer liquid systems have attracted great attention in the past two decades,mainly owing to their relevance in nature and in many engineering applications.Many works have been carried out to investigate the thermocapillary convection in two-layer liquid systems in rectangular cavities or in infinite horizontal layers.However,few studies focused on the convection phenomena in two-layer liquid systems in the annular cavity.In order to understand the basic characteristics of thermocapillary convection of the thin two superposed horizontal liquid layers subjected to a radial temperature gradient in an annular cavity,an approximate analytical solution is obtained using asymptotical analysis.The cavity is heated from the outer cylindrical wall and cooled at the inner wall.Bottom and top surfaces are adiabatic.Results show that the expressions of velocity and temperature field in the core region are the same as the results obtained by Nepomnyashchy et al(Physics of Fluids,2006,18:032105) when thin annular pool approaches to thin two-dimensional slot.The numerical experiments are also carried out to compare with the asymptotic solution. It is found that there is a good agreement between the asymptotic solution and numerical result in the core region.
出处 《力学学报》 EI CSCD 北大核心 2010年第2期306-311,共6页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(50776102) The project supported by the National Natural Science Foundation of China(50776102)
关键词 热毛细对流 环形腔 双层薄液层 水平温度梯度 渐近解 thermocapillary convection annular cavity thin two-layer system radial temperature gradient asymptotic solution
  • 相关文献

参考文献13

  • 1Jurisch M, Borner F, Bunger Th, et al. LEC- and VGF- growth of SI GaAs single crystals-recent developments and current issues. Journal of Crystal Growth, 2005, 275: 283-291.
  • 2Morton JL, Ma N, Bliss DF, et al. Magnetic field effects during liquid-encapsulated Czochralski growth of doped photonic semiconductor crystals. Journal of Crystal Growth, 2003, 250:174-182.
  • 3Villers D, Platten JK. Influence of interfacial tension gradients on thermal convection in two superposed immiscible liquid layers. Appl Sci Res, 1990, 47:177-202.
  • 4Villers D, Platten JK. Thermal convection in superposed immiscible liquid layers, Appl Sci Res, 1998, 45:145-156.
  • 5Doi T, Koster JN. Thermocapillary convection in two immiscible liquid layers with free surface. Physics of Fluids, 1993, A5:1914-1927.
  • 6Liu QS, Chen G, Roux B. Thermogravitational and thermocapillary convection in a cavity containing two superposed immiscible liquid layers. Int J Heat Mass Transfer, 1993.36:101-117.
  • 7Liu QS, Roux B, Velarde MG. Thermocapillary convection in two-layers system. Int J Heat Mass Transfer, 1998, 41: 1499-1511.
  • 8Gupta NR, Haj-Hariri H, Borhanc A. Thermocapillary flow in double-layer fluid structures: An effective single-layer model. J Colloid Interface Sci, 2006, 293:158-171.
  • 9Gupta NR, Haj-Hariri H, Borhanc A. Thermocapillary convection in double-layer fluid structures within a two- dimensional open cavity. J Colloid Interface Sci, 2007, 315:237-247.
  • 10Madruga S, Perez-Garcia C, Lebonl G. Convective instabilities in two superposed horizontal liquid layers heated laterally. Physical Review E, 2003, 68:041607.

同被引文献17

  • 1彭岚,李友荣,曾丹苓,今石宣之.环形液池内中等Pr数流体的浮力-热毛细对流[J].力学学报,2005,37(3):266-271. 被引量:2
  • 2Schwabe D. Marangoni effects in crystal growth melts Physico Chem Hydrodynam, 1981, 2:263-280.
  • 3Thorpe E J, Hutt PK, Soulsby R. The effects of horizontal gradients in thermohaline convection. J Fluid Mech, 1969, 38:375-400.
  • 4Chen CF, Briggs DG, Wirtz RA. Stability of thermal con- vection in a Salinity gradient due to lateral heating. Int J Heat Mass Trans, 1971, 14:57-65.
  • 5Chan CL, ChenWY, Chen CF. Secondary motion in con- vection layers generated by lateral heating of a solute gra- dient. J FluidMech, 2002, 455:2143-2159.
  • 6Bergman TL. Numerical simulation of double-diffusive Marangoni convection. Phys Fluids, 1986, 29:2103.
  • 7Chen CF, Chan CL. Stability of buoyancy and surface ten- sion driven convection in a horizontal double-diffusive fluid layer. Int J Heat Mass Trans, 2010, 53:1563-1569.
  • 8Zhan JM, Chen ZW, Li YS, et al. Three-dimensional double-diffusive Marangoni convection in a cubic cavity with horizontal, temperature and concentration gradients. Phys Rev E, 2010, 82:066305.
  • 9Chen ZW, Li YS, Zhan JM. Double-diffusive Marangoni convection in a rectangular cavity: onset of convection. Phys Fluids, 2010, 22:034106.
  • 10Li YS, Chen ZW, Zhan JM. Double-diffusive Marangoni convection in a rectangular cavity: transition to chaos. In- ter J Heat Mass Trans, 2010, 53:5223-5231.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部