期刊文献+

多元分离子的构造与应用

Construction and Applications of Multivariate Separators
原文传递
导出
摘要 本文研究了两类多元分离子的构造方法并提出计算公式.分析了多元分离子与Groebner基的关系.把所求分离子应用到多元插值问题上,得到在字典序与广义字典序下用分离子表示的多元插值多项式.数值模拟显示了所述方法的有效性. In this paper,construction methods for two types of separators are studied and the corresponding computational formulas are given.Grobner bases techniques are applied to construct multivariate separators that can solve a given multivariate interpolation problem. The paper provides the representations of interpolating polynomials by two particular separating sets constructed using the lex order and the generalized lex order.The efficiency of the methods is tested by numeric simulations.
出处 《应用数学学报》 CSCD 北大核心 2010年第2期281-289,共9页 Acta Mathematicae Applicatae Sinica
基金 北京市大学生科学研究与创业行动计划资助项目
关键词 GROEBNER基 分离子 字典序 广义字典序 多元插值多项式 Groebner bases separator multivariate polynomial interpolation.
  • 相关文献

参考文献5

  • 1Maxiano Gasca, Thomas Sauer. Polynomial interpolation in Several Variables. Advances in Computational Mathematics, 2002, 12: 377-410.
  • 2Mariano Gasca, Thomas Sauer. On the History of Multivariate Polynomial Interpolation. Advances in Computational Mathematics, 2000, 122:23-37.
  • 3Joseph J. Rotman. Advanced Modern Algebra. Beijing: China Machine Press, 2007.1.
  • 4Li Aihua. An Algebraic Approach to Building Interpolating Polynomials. Discrete and Continuous Dynamical System, 2005, Suppl. Vol. , 597-604.
  • 5Min Xiangjuan, Zhang Xiaodan, Li Aihua. The Algebraic Modeling of Discrete Time Series. Journal of Shangdong University of Technology, 2007, 21(5): 93-96.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部