期刊文献+

基于IRWLS支持向量拟合的线谱检测算法 被引量:6

An Algorithm of Line Spectrum Signal Detection Based on IRWLS-SVR
下载PDF
导出
摘要 基于迭代最小二乘支持向量拟合(IRWLS-SVR)算法,建立了舰船噪声中线谱信号的数学模型用于对噪声背景中线谱信号的检测;利用IRWLS-SVR算法得到的稀疏解,减少了运算量,提高了运算速度。利用计算机仿真信号和实测舰船声信号的验证表明,该算法在高斯噪声背景下可以有效地检测出线谱信号,检测舰船噪声信号中线谱信号的信噪比改善达到4dB。 A mathematical model for the line spectrum signals of ship-radiated noise based on IRWLS-SVR algorithm is proposed, which is of high calculation speed and low computational cost because of the sparse solution. The simulation results by using measured noise data show that the algorithm can detect the line spectrum signal in the Gaussian noise background effectively, with about 4 dB signal to noise ratio improvement.
出处 《电声技术》 2010年第4期47-49,共3页 Audio Engineering
关键词 支持向量拟合 迭代权值最小二乘法 线谱 信号检测 support vector regression Iterative re-weighted least squares line spectrum signals signal detection
  • 相关文献

参考文献9

  • 1李启虎.第一讲 进入21世纪的声纳技术[J].物理,2006,35(5):402-407. 被引量:16
  • 2VAPNIK V N.The nature of statistical learning theory[J].New York:Springer-Vedag,1995.
  • 3ROJO-ALVAREZJL,MARTINEZ-RAMONM,FIGUEIRASVIDAL A R,et al.A robust support vector algorithm for nonparametric spectral analysis[J].IEEE Signal Processing Letters,2003,10 (10):320-323.
  • 4TUNTISAK S,PREMRUDEEPREECHACHARN S.Harmonic detection in distribution systems using wavelet transform and support vector machine[C]// Power Tech 2007,IEEE Power Engineering Society.Lausanne:[s.n.],2007:1540-1545.
  • 5SUN Bingyu,HUANG De-Shuang,FANG Haitao.Lidar signal denoising using least-squares support vector machine[J].IEEE Signal Processing Letters,2005,12(2):101-104.
  • 6ROJO-ALVAREZ J L,BARQUERO-PEREZ O,MORAJIMENEZ I,et al.Heart rate turbulence denoising using support vector machines[J].IEEE Trans.on Biomedical Engineering,2009,56(2):310-319.
  • 7张翔,刘晓敏,肖小玲,胡文宝.基于支持向量机回归的去噪方法及其应用[J].工程地球物理学报,2005,2(3):191-194. 被引量:9
  • 8杨兴明,张培仁,丁学明,屠运武,孙丙宇,陈锐锋.基于SVM和相干平均去噪的大坝位移检测方法[J].中国科学技术大学学报,2005,35(2):208-213. 被引量:1
  • 9Mumtaz A,Gilani S A M,Jameel T.A novel color image retrieval system based on dual tree complex wavelet transform and support vector machines[C]// Proceedings of Muhitopic Conference,2006.INMIC '06 Islamabad:Robotics &Intelligent Computing Group,Computer Science Department,LUMS,2006:163-168.

二级参考文献11

  • 1[3]Vapnik V N.Statistical Learning Theory[M].New York,Wiley,1998.
  • 2[4]Burges C J C.A Tutorial on Support Vector Machines for Pattern Recognition[J].Knowledge Discovery and Data Mining,1998,2(2):121-167.
  • 3[5]Pontil M,Verri A.Support Vector Machines for 3D Object Recognition[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1998,20 (6):637-646.
  • 4胡广书.数字信号处理——理论、算法与实现[M].北京:清华大学出版社,1996..
  • 5Schoelkopf B,Smola A.Learning with Kernels.Cambridge,MA:MIT Press,2002.
  • 6Vapnik V.The nature of Statistical Learning Theory[M].New York:Wiley,1998.
  • 7Suykens J AK,VanGestelT,De Brabanter J,et a1.Least Squares Support Vector Machines,World Scientific,2002.
  • 8程晓舫,王瑞芳,张维农,王亚雄.火灾探测的原理和方法(上)[J].中国安全科学学报,1999,9(1):24-29. 被引量:40
  • 9李启虎.独立观测资料的最佳线性数据融合[J].声学学报,2000,25(5):385-388. 被引量:37
  • 10李启虎.水声学研究进展[J].声学学报,2001,26(4):295-301. 被引量:54

共引文献23

同被引文献58

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部