期刊文献+

半监督学习对十个口述数字的识别

Syllable Recognition Based on Semi-supervised Learning
下载PDF
导出
摘要 提出了一种基于半监督学习的音节识别方法,该方法可在训练样本很少的情况下得到较好的识别效果。实验结果表明,在小样本情况下,半监督学习方法比传统的HMM方法具有更高的识别率。 A syllable recognition approach based on semi-supervised learning is proposed. This approach has an advantege of obtaining effective recognition when training data set are incomplete Experiment results prove that semisupervised learning is more efficient than traditional HMM in syllable recognition.
出处 《电声技术》 2010年第4期50-52,共3页 Audio Engineering
关键词 半监督学习 特征提取 音节识别 semi-supervised learning feature extraction syllable recognition
  • 相关文献

参考文献7

  • 1YU K,MASON J,OGLESBY J.Speaker recognition using hidden Markov models,dynamic timewarping and vector quantisation[J],lEE Proceedings of Vision Image and Signal Processing,1995,142(5):313-318.
  • 2RABINER L R.A tutorial on hidden Markovs and selected applications in speech recognition[J].Proceedings of the IEEE,1989,77 (2):257-286.
  • 3MOON Seokyong,HWANG Jenq-neng.From artificial neural network inversion to hidden Markov modelinversion:application to robust speech recognition[C]// Proceedings of the 1995 IEEE Workshop Neural Networks for Signal Processing.[S.l.]:IEEE Press,1995,31:253-262.
  • 4顾明亮,王太君,何振亚.语音信号时间动态规正新方法[J].东南大学学报(自然科学版),1998,28(2):10-14. 被引量:7
  • 5LI Yuanqing,GUAN Cuntai,LI Huiqi,et al.A selftraining semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system[J].Pattern Recognition Letters,2008,29 (9):1285-1294.
  • 6BLUM Avrim,MITCHELL T.Combining labeled and unlabeled data with co-training[C]//Proceedings of the Workshop on Computational Learning Theory.Madison:[s.n.],1998:92-100.
  • 7ZHU Xiaojin.Semi-supervised learning with graphs[D].Pittsburgh:Carnegie Mellon University,2005:5-7.

二级参考文献2

  • 1Zhu S,Feature parameter curve method for high performance NN-based speech recognition,1996年
  • 2Chen S H,IEEE Trans SAP,1995年,3卷,2期,141页

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部