期刊文献+

基于自相关最大值和过门限率的语音端点检测 被引量:4

A Speech Endpoint Detection Algorithm Based on Maximum of Auto-correlation Function and Amended Threshold-crossing Rate
下载PDF
导出
摘要 语音处理中,在噪声环境尤其是在非平稳噪音环境下进行端点检测是很困难的。在低信噪比的情况下,传统用于端点检测的特征参数不能充分描述语音信号的特征,导致端点检测的效果严重退化。为此,笔者从语音信号的时域或频域出发,提出了一种把短时自相关函数最大值和短时过门限率相结合的方法。实验表明,该方法弥补了自相关函数最大值方法和过零率的不足,提高了语音端点检测的性能。 In speech processing, endpoint detection is difiqcult in noisy environments, especially in the presence of non--stationary noise. The traditional characteristic parameters for the endpoint detection can not be adequately described the characteristics of speech signals, resulting in severe degradation of the effect of endpoint detection in low SNR. So a novel method that maximum of autocorrelation function is combined with the amended zero-crossing rate is presented. Experimental results show that the method can compensating the drawback of the maximum of auto-correlation method and the zero-crossing method so that the performance of the detection is improved.
出处 《电声技术》 2010年第4期53-57,66,共6页 Audio Engineering
关键词 自相关 过零率 过门限率 autocorrelation zero-crossing rate threshold-crossing rate
  • 相关文献

参考文献9

  • 1LI Q.Robust endpoint detection and energy normalization for real-time speech and speaker recognition[J].IEEE Trans.on Speech and Audio,2002,10(3):146-157.
  • 2NEY H.An optimization algorithm for determining the endpoints of isolated utterances[C]// Proceedings of ICASSP.[S.l.]:IEEE Press,1981:720-723.
  • 3SAVOJI M H.A robust algorithm for accurate endpointing of speech[J].Speech Commun.,1989,8:45-60.
  • 4MRTIN A,MAUUARY L.Voicing parameter and energy based speech /nonspeeeh detection for speech recognition in adverse conditions[C]// Proceedings of EuroSpeech 03.Geneva:[s.n.],2003:3069-3072.
  • 5国雁萌,盛任农,牟英良.基于能量和浊音特性的语音端点检测[J].计算机工程与应用,2006,42(26):43-45. 被引量:5
  • 6QI Y Y,HUNT B R.Voiced-unvoiced-silence classification of speech using hybrid features and a network classifier[J].IEEE Trans.on Speech and Audio Processing,1993,1 (2):250-255.
  • 7KIA S J,COGHILL G G.A mapping neural network and its application to voiced-unvoiced-silence classification[C]//Proceedings of International Conference on Artificial Neural Networks Expert Systems.[S.l.]:IEEE Press,1992:104-108.
  • 8BOU-GHAZALE S E,ASSALEH K.A robust endpoint detection of speech for noisy environments with application to automatic speech recognition[C]// Proceedings of IEEE ICASSP 02.[S.l.]:IEEE Press,2002:3808-3811.
  • 9李如玮,鲍长春.一种基于分带谱熵和谱能量的语音端点检测算法[J].北京工业大学学报,2007,33(9):920-924. 被引量:12

二级参考文献16

  • 1ITU-T Recommendation G.729-Annex B:A Silence Compression Scheme for G.729 Optimized for Terminals Conforming to Recommendation V.70[S].1996
  • 2Qi Li et al.Robust endpoint detection and energy normalization for real-time speech and speaker recognition[J].IEEE Trans Speech and Audio,2002; 10(3):146~157
  • 3Sahar E Bou-Ghazale,Khaled Assaleh.A robust endpoint detection of speech for noisy environments with application to automatic speech recognition[C].In:Proc IEEE ICASSP 02,2002:3808~3811
  • 4Arnaud Mrtin,Laurent Mauuary.Voicing parameter and energy based speech/nonspeech detection for speech recognition in adverse conditions[C].In:Proc EuroSpeech 03,Geneva,2003:3069~3072
  • 5Thomas F Quatieri 著.赵胜辉等译.离散时间语音信号处理-原理与应用[M].北京:电子工业出版社,2004:56~58
  • 6Ahmad R Abu-El-Quran,Rafik A Goubran.Pitch-Based Feature Extraction for Audio Classification[C].In:Proc IEEE ICASSP 03,2003:43~47
  • 7Duanpei Wu et al.A robust speech detection algorithm for speech activated hands-free applications[C].In:Proc IEEE ICASSP 99,1999:2407~2410
  • 8ETSI ES 201 108 Recommendation:Speech processing,transmission and quality aspects (STQ); distributed speech recognition; advanced front-end feature extraction algorithm;compression algorithms[S].2002
  • 9HE Su-ning, YU Jue-bang. Robustness and co-operative multi-model man-machine communication applications[C]// ICCCSWP. Chengdu: Institute of Electrical and Electronics Engineers, 2002: 997-1002.
  • 10LAMEL L, LAWRENCE R R, ROSENBERG A E, et al. An improved endpoint detect for isolated word recognition[J ]. ITASSP, 1981, 29(4): 777-785.

共引文献15

同被引文献16

  • 1张仁志,崔慧娟.基于短时能量的语音端点检测算法研究[J].电声技术,2005,29(7):52-54. 被引量:45
  • 2刘淑华,胡强,覃团发,梁琳.基于自相关函数最大值的语音端点检测方法[J].电声技术,2006,30(12):47-50. 被引量:10
  • 3JUNQUA J C,MAK B,REAVES B.A robust algorithm for word boundary detection in the presence of noise[J].IEEE Trans.on Speech and Audio Processing,1994,2(3):406-412.
  • 4WU G D,LIN C T.Word boundary detection with mel-scale frequency bank in noisy environment[J].IEEE Trans.on Speech and Audio Processing,2000,8(5):541-554.
  • 5VERITELLLI F,CASALE S,RUGGERI G,et al.Performance evaluation and comparison of G.729/AMR/fussy voice activity detectors[J].IEEE Signal Processing and Audio Processing,2002,9(3):85-88.
  • 6NEMER E,GOUBRAN R,MAHMOUD S.Robust voice activity detection using higher-order statistics in the LPC residual domain[J].IEEE Trans.on Speech and Audio Processing,2001,9(3):217-231.
  • 7BENYASSINE A,SHLOMOT E,SU H Y.ITU Recommendation G.729 Annex B:a silence compression scheme for use with G.729 optimized for V.70 digital simultaneous voice and data applications[J].IEEE Comm.Mag.1997,9:64-73.
  • 8ETSL ETSI TS 126 094 V7.0.0(2007-06)Digital cellular telecommunications system(Phase 2+);Universal Mobile Telecommunications System(UMTS);Mandatory speech codec speech processing functions; Adaptive multi-rate(AMR)speech codec;Voice activity detector(VAD)(3GPP TS 26.094 version 7.0.0 Release 7)[S].[S.1.] :ESTI,2009.
  • 9杨行俊 迟惠生.语音信号数字处理[M].北京:电子工业出版社,1995..
  • 10Siegel L J, Bessey A C. Voiced/unvoiced/mixed excitation classification of speech [ J ]. IEEE Transaction on Acoustics, Speech, Signal Processing, 1982,30 ( 3 ) :451 - 460.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部