摘要
通过引入四参数和非线性浅水方程至Kennedy等人推导的二阶全非线性Boussinesq方程中,改善了原方程的色散和变浅性能,并通过新方程建立适合较深水域的近岸波浪场数学模型,模拟了椭圆形浅滩地形上的波浪传播变形,从数值结果和试验结果的比较上看,该模型可以很好地模拟近岸波浪场的实际问题。
A new form of second-order fully nonlinear Boussinesq wave equations is established through adopting four parameters and nonlinear shallow water equations, with linear dispersion and shoaling properties improvement. A numerical model is created on the new Boussineq wave equations which adapted to deeper water, and in order to verify the numerical model, waves are simulated on an elliptic shallow beach through numerical model. By contrasting numerical results and test results, the model can simulate near-shore wave well.
出处
《科学技术与工程》
2010年第11期2661-2664,2671,共5页
Science Technology and Engineering
基金
国家自然科学基金资助项目(10902039)资助