期刊文献+

基于有导向变异算子的GM-EA算法 被引量:5

GM-EA:guided mutation evolutionary algorithm
下载PDF
导出
摘要 为了进一步提高演化算法的效率,提出基于有导向变异算子的GM-EA算法(guided mutation evolutio-nary algorithm)。通过结合粒子群优化的方法改进郭涛算法,更好地利用当前最优解指导变异,并将算法分为探索与开采两个阶段;在开采阶段基于模拟退火方法决定是否用新个体取代旧个体,在巩固所获取的建筑块成分的同时,尽可能克服早熟收敛问题。实验结果证明了新算法的有效性。 To design a more effective evolutionary algorithm,this paper introduced a new guided mutation evolutionary algorithm by combining Guotao algorithm with the idea from particle swarm optimization,which focused on exploiting the global best solution in population to direct the mutation.In order to preserve the components of building-blocks and avoid the premature problem,separated the search process as the exploration phase and exploitation phase,and in exploitation phase simulated annealing was applied as the replace policy.The experimental results show that the proposed algorithm is significantly superior to Guotao algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2010年第4期1249-1251,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60763012 40761027) 广西自然科学基金资助(0991104)
关键词 有导向的变异 郭涛算法 粒子群优化 模拟退火 guided mutation Guotao algorithm particle swarm optimization(PSO) simulated annealing
  • 相关文献

参考文献9

  • 1EIBEN A E,SMITH J E.Introduction to evolutionary computing[M].Berlin:Springer-Verlag,2003.
  • 2STORN R,PRICE K.Differential evolution:a simple and efficient adaptive scheme for global optimization over continuous spaces,TR-95-012[R].Berkely:International Computer Science Instititute,1995.
  • 3GUO Tao,MICHALEWICZ Z.Inver-over operator for the TSP[C]//Proc of the 5th International Conference on Parallel Problem Solving from Nature.Berlin:Springer,1998:803-812.
  • 4闭应洲,丁立新,杨小雄.基于免疫学原理降低交叉算子破坏性的研究[J].计算机工程与应用,2007,43(18):42-44. 被引量:4
  • 5ZHANG Qing-fu,SUN Jian-yong,TSAN G E.An evolutionary algorithm with guided mutation for the maximum clique problem[J].IEEE Trans on Evolutionary Computation,2005,9(2):192-200.
  • 6GLOVER F W,LAGUNA M.Tabu search[M].Norwell,MA:Kluwer Academic Publishers,1998.
  • 7KEMENADE C H M.Building block filtering and mixing,SEN-R9837[R].Amsterdam:Contre for Mathematics and Computer Science,1998.
  • 8HARIK G R.Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms[D].Ann Arbor:University of Michigan,1997.
  • 9SPEARS W M.The role of mutation and recombination in evolutio-nary algorithms[D].Fairfax:George Mason University,1998.

二级参考文献1

共引文献3

同被引文献46

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部